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Abstract. Classifications have been used for centuries with the goal of
cataloguing and searching large sets of objects. In the early days it was
mainly books; lately it has also become Web pages, pictures and any
kind of electronic information items. Classifications describe their con-
tents using natural language labels, which has proved very effective in
manual classification. However natural language labels show their lim-
itations when one tries to automate the process, as they make it very
hard to reason about classifications and their contents. In this paper we
introduce the novel notion of Formal Classification, as a graph structure
where labels are written in a propositional concept language. Formal
Classifications turn out to be some form of lightweight ontologies. This,
in turn, allows us to reason about them, to associate to each node a nor-
mal form formula which univocally describes its contents, and to reduce
document classification to reasoning about subsumption.

1 Introduction

In today’s information society, as the amount of information grows larger, it
becomes essential to develop efficient ways to summarize and navigate informa-
tion from large, multivariate data sets. The field of classification supports these
tasks, as it investigates how sets of “objects” can be summarized into a small
number of classes, and it also provides methods to assist the search of such “ob-
jects” [8]. In the past centuries, classification has been the domain of librarians
and archivists. Lately a lot of interest has focused also on the management of
the information present in the web: see for instance the WWW Virtual Library
project [1], or directories of search engines like Google, or Yahoo!.

Web directories are often called lightweight ontologies [23]. However, they lack
at least one important property attributable to the notion of ontology. Namely,
that an ontology must be represented in a formal language, which can then be
used for automating reasoning [16]. None of the existing human crafted classi-
fications possesses this property. Because classification hierarchies are written
in natural language, it is very hard to automate the classification task, and, as
a consequence, standard classification approaches amount to manually classify-
ing objects into classes. Examples include DMOZ, a human edited web directory,
which “powers the core directory services for the most popular portals and search



engines on the Web, including AOL Search, Netscape Search, Google, Lycos,
DirectHit, and HotBot, and hundreds of others” [22]; and the Dewey Decimal
Classification System (DDC) [5]. Although they are based on well-founded clas-
sification methodologies, all these classifications have a number of limitations:

– the semantics of a given category is implicitly codified in a natural language
label, which may be ambiguous and will therefore be interpreted differently
by different classifiers;

– a link, connecting two nodes, may also be ambiguous in the sense that it may
be considered to specify the meaning of the child node, of the parent node,
or of both. For instance, a link connecting the parent node “programming”
with its child node “Java” may, or may not mean that (a) the parent node
means “computer programming” (and not, for example, “events schedul-
ing”); (b) that the child node means “Java, the programming language” (and
not “Java, the island”); and (c) that the parent node’s meaning excludes the
meaning of the child node, i.e., it is “programming and not Java”;

– as a consequence of the previous two items, the classification task also be-
comes ambiguous in the sense that different classifiers may classify the same
objects differently, based on their subjective opinion.

In the present paper we propose an approach to converting classifications into
lightweight ontologies, thus eliminating the three ambiguities discussed above.
This in turn allows us to automate, through propositional reasoning, the essential
task of document classification. Concretely, we propose a three step approach:

– first, we convert a classification into a new structure, which we call Formal
Classification (FC ), where all the labels are expressed in a propositional
Description Logic (DL) language (i.e., a DL language without roles) [3];

– second, we convert a FC into a Normalized Formal Classification (NFC ). In
NFCs each node’s label is a propositional DL formula, which univocally cod-
ifies the meaning of the node in the corresponding classification, taking into
account both the label of the node and its position within the classification;

– third, we encode document classification in NFCs as a propositional satisfia-
bility (SAT) problem, and solve it using a sound and complete SAT engine.

NFCs are full-fledged lightweight ontologies, and have many nice properties.
Among them:

– nodes’ labels univocally codify the set of documents, which can be classified
in these nodes;

– NFCs are taxonomies in the sense that, from the root down to the leaves,
labels of child nodes are subsumed by the labels of their parent nodes;

– as nodes’ labels codify the position of the nodes in the hierarchy, document
classification can be done simply by analyzing the set of labels. There is no
need to inspect the edge structure of the NFC.

The remainder of the paper is organized as follows. In Section 2 we introduce
classifications and discuss how they are used. In Section 3 we motivate a formal



approach to dealing with classifications. In Section 4 we introduce the notion of
FC as a way to disambiguate labels in classifications. In Section 5 we discuss
how we disambiguate links in classifications by introducing the notion of NFC.
In Section 6 we show how the essential task of document classification can be
fully automated in NFCs by means of propositional reasoning. In Section 7 we
discuss related work. Section 8 summarizes the results and concludes the paper.

2 Classifications

Classifications are rooted trees, where each node is assigned a natural language
label. Classifications are used for the categorization of various kinds of objects,
such as books, office documents, web pages, and multimedia files into a set of
categories. Classifications are also used for searching for objects by browsing the
categories and looking inside those, where the objects are likely to be located.

We define the notion of classification as a rooted tree C = �N,E,L� where N
is a finite set of nodes, E is a set of edges on N , and L is is a finite set of labels
expressed in natural language, such that for any node ni ∈ N , there is one and
only one label li ∈ L.

Labels describe real world entities or individual objects, and the meaning of
a label in a classification is the set of documents, that are about the entities (or
individual objects) described by the label. We call this meaning of labels, the
classification semantics of labels. Note, that a label can be about a document,
e.g., a book; and, in this case, the classification semantics of this label is the set
of documents, which are about the book, e.g., book reviews.

There are many methodologies for how to classify objects into classification
hierarchies. These methodologies range from the many rigorous rules of DDC [5],
“polished” by librarians during more than one hundred years; to less strict, but
still powerful rules of classification in a web directory1. In all the different cases,
a human classifier needs to follow a common pattern, which we summarize in
four steps. We discuss the steps below, and we elucidate them on the example
of a part of the DMOZ web directory shown in Figure 1.
1. Disambiguating labels. The challenge here is to disambiguate natural lan-
guage words and labels. For example, the classifier has to understand that in the
label of node n7, the word “Java” has at least three senses, which are: an island
in Indonesia; a coffee beverage; and an object-oriented programming language;
2. Disambiguating links. At this step the classifier has to interpret links
between nodes. Namely, the classifier needs to consider the fact that each non-
root node is “viewed” in the context of its parent node; and then specify the
meanings of the nodes’ labels. For instance, the meaning of the label of node n8,
computers, is bounded by the meaning of node n6, business books publishing;
3. Understanding classification alternatives. Given an object, the classi-
fier has to understand what classification alternatives for this object are. For

1 See, for instance, the DMOZ classification rules at http://dmoz.org/guidelines/.



instance, the book “Java Enterprise in a Nutshell, Second Edition” might po-
tentially be put in all the nodes of the hierarchy shown in Figure 1. The reason
for this is that the book is related to both business and technology branches;
4. Making choices. Given the set of classification alternatives, the classifier
has to decide, based on a predefined system of rules, where to put the given
object. The system of rules may differ from classification to classification, but
one rule is commonly followed: the get-specific rule. The rule states that any
object must be classified in a category (or in several categories), which most
specifically describes the object. In order to follow this rule, one needs to “dig”
deep into the classification schema and find a category, which is located as low
as possible in the classification tree, and which is still more general than what
the object is about. Note, that there may be more than one such category. For
instance, if the get-specific rule was used, then one would classify the above
mentioned book into nodes n7 and n8, as they most specifically characterize it.

Fig. 1. A part of the DMOZ web directory

Note, that the four steps above are also followed when one is searching for
an object by means of classification browsing. The only difference is in that now
the categories are searched for where to find the object, and not where to put it.

3 Why Formal Classifications?

Let us exemplify our arguments in favour of a formal approach to classification
on the English part of the DMOZ web directory2. We report a summary of the
statistical analysis we performed on it in Table 1.

Humans have proven to be very effective at performing steps 1 and 2 de-
scribed in Section 2. However, there are still some challenges to be addressed.
2 We excluded branches leading to non-English labels, such as “Top/World/” or

“Top/Kids and Teens/International/”.



The main challenge in step 1 is dealing with the ambiguities introduced by mul-
tiple possibilities in meaning. One source of this is in that labels contain many
conjunctions “and”’s and “or”’s, whereas they actually mean inclusive disjunc-
tion, i.e., either the first conjunct, or the second, or both. For instance, the
phrase “wine and cheese” means either wine, or cheese, or both. Apart from the
conjunctions, multiple possibilities are also introduced by punctuation marks de-
noting enumeration (e.g., the comma), and by words’ senses (recall the “Java”
example from the previous section). It has been shown, that cognitive reasoning
with the presence of multiple possibilities in meaning is an error-prone task for
humans [10]. For instance, even if DMOZ labels are short phrases, consisting,
on average, of 1.81 tokens, they contain 0.23 conjunctions per label; and average
polysemy for nouns and adjectives is 3.72 per word.

Statistics category Value

Total English labels 477,786
Tokens per label, avg. 1.81
Total links classified in English labels 3,047,643
Duplicate links, % from the total 10.70%
Nouns and adjectives polysemy, avg. 3.72
“and”’s and “or”’s per label, avg. 0.23
Total disjunctions per label, avg. 3.79
Root-to-leaf path length, avg. 7.09
Branching factor, avg. 4.00

Table 1. DMOZ statistics

The challenge of step 2 is that the classifier may need to follow a long path
of nodes in order to figure out a node’s meaning. It has two consequences: first,
the classifier needs to deal with the growing complexity in ambiguity introduced
by each new label in the path; and, second, the classifier has to consider each
new label in the context of the labels of the ancestor nodes, and, thus, partly
resolve the ambiguity. Note, that the average length of a path from the root to
a leaf node in DMOZ is rather high and it constitutes 7.09 nodes.

Steps 3 and 4 are where the real problems for humans begin. Even with
classifications of an average size, it is not easy to find all the classification alter-
natives. With large classifications this task becomes practically unfeasible. For
instance, think about possible classification alternatives in DMOZ, which has
477,786 English categories. Thus, at step 3, a human classifier may not be able
to enumerate all the possible classification alternatives for an object.

Step 4 requires abundant expertise and profound methodological skills on the
side of the classifier. However, even an expert makes subjective decisions, what
leads, when a classification is populated by several classifiers, to nonuniform,
duplicate, and error-prone classification. If the get-specific rule is used, then the
classifier has to parse the classification tree in a top-down fashion, considering at
each parent node, which of its child nodes are appropriate for the classification.



Note, that even if DMOZ encourages the classification of a Web page in a single
category, among 3,047,643 links (classified in English labels), about 10.70% are
classified in more than one node3. And, about 91.36% of these are classified in
two different nodes. This is not surprising given that DMOZ is populated by
more than 70,000 classifiers, and that it has average branching factor of 4.00.

Given all the above described complexity, humans still outperform machines
in natural language understanding tasks [20], which are the core of steps 1 and
2. Still, the availability of electronic repositories that encode world knowledge
(e.g., [12, 14]), and powerful natural language processing tools (e.g., [17, 12])
allows the machines to perform these steps reasonably well. Moreover, machines
can be much more efficient and effective at steps 3 and 4, if the problem is
encoded in a formal language, which is what we propose to do in our approach.

4 Disambiguating Labels

Formal Classifications (FCs) are rooted trees, where each node is assigned a
formal language label. FCs and classifications are related in the sense that a
FC is a formalized copy of a classification. In other words, a FC has the same
structure as the classification, but it encodes the classification’s labels in a formal
language, capable of encapsulating, at the best possible level of approximation,
their classification semantics. In this respect, classifications’s labels have at least
one nice property. Namely, since labels are meant to describe real world entities,
and not actions, performed on or by entities, and relations between entities, the
labels are mainly constituted of noun phrases; and, therefore, there are very
few words which are verbs. This makes it very suitable to use a Description
Logic (DL) language as the formal language, as DLs are a precise notation for
representing noun phrases [3].

We define the notion of Formal Classification as a rooted tree FC = �N,E,LF �
where N is a finite set of nodes, E is a set of edges on N , and LF is a finite set
of labels expressed in Propositional Description Logic language LC , such that for
any node ni ∈ N , there is one and only one label lFi ∈ LF .

Converting classifications into FCs automates step 1, as described in Sec-
tion 2. In our approach we build on the work of Magnini et. al. [13]. We translate
a natural language label into an expression in LC by means of mapping different
parts of speech (POSs), their mutual syntactic relation, and punctuation to the
classification semantics of labels. We proceed in two steps, as discussed below:
1. Build atomic concepts. Senses of (multi-word) common nouns and adjec-
tives become atomic concepts of LC , whose interpretation is the set of documents
about the entities, which are denoted by the nouns, or which possess the qualities
denoted by the adjectives4. We enumerate word senses using WordNet [14], and
3 We identified duplicate links by exact equivalence of their URLs.
4 Because of their negligibly small presence, we do not consider verbs. We neither

consider articles, numerals, pronouns and adverbs. However, their share in the labels
of actual classifications is reasonably small. When such words are found, they are
just omitted from the label.



we write [x#i] to denote an atomic concept corresponding to the ith sense of the
word x in WordNet. For instance, [programming#2] is an atomic concept, whose
interpretation is the set of documents which are about computer programming;
and the atomic concept [red#1] denotes the set of documents which are about
red entities, e.g., red cats or red hats. Proper nouns become atomic concepts of
LC , whose interpretation is the set of documents about the individual objects,
denoted by these nouns. They may be long expressions, denoting names of peo-
ple, movies, music bands, and so on. Some examples are the movie “Gone with
the Wind”, and the music band “The Rolling Stones”.
2. Build complex concepts. Complex concepts are built from atomic concepts
as follows: first, we build formulas for words as the logical disjunction (�) of
atomic concepts corresponding to the words’ senses, and we write [x∗] to denote
the disjunction of the senses of word x. For instance, the noun “Programming”
becomes the concept [programming#1 � programming#2], whose interpretation
is the set of documents which are about event scheduling and/or about com-
puter programming. Second, labels are chunked, i.e., divided into sequences of
syntactically correlated parts of words. We then translate syntactic relations of
words within chunks to the logical connectives of LC following a precise pattern.
Let us consider few examples.

A set of adjectives followed by a noun group is translated into logical con-
junction (�) of the formulas corresponding to the adjectives and the nouns. The
interpretation of the resulting concept is the set of documents which are about
the real world entities denoted by all the nouns, and which possess qualities, de-
noted by all the adjectives. For instance, the phrase “long cold winter blizzard”
is translated into the concept [long∗ � cold∗ � winter∗ � blizzard∗]. Preposi-
tions are also translated into the conjunction. The intuition is that prepositions
denote some commonality between the objects they relate; and, in terms of the
classification semantics, this “commonality” can be approximated to the set of
documents which are about the both objects. For instance, the following phrases:
“books of magic”, “science in society”, and “software for engineering”, they all
denote what the two words, connected by the prepositions, have in common.

Coordinating conjunctions “and” and “or” are translated into the logical
disjunction. For instance, “flights or trains” and “animals and plants” become
[flight∗�train∗] and [animal∗�plant∗] respectively. Punctuation marks such
as the period (.), the coma (,) and the semicolon (;) are also translated into logical
disjunction. For instance, the phrase “metro, bus, and trolley” is converted into
the concept [metro∗ � bus∗ � trolley∗].

Words and phrases denoting exclusions, such as “excluding”, “except”, “but
not”, are translated into the logical negation (¬). For instance, the label “runners
excluding sprinters” becomes the concept [runner∗ � ¬sprinter∗]. However,
since they are meant to describe what “there is” in the world, and not what
“there isn’t”, labels contain very few such phrases, if at all.

The use of logical connectives, as described above but with the exception of
prepositions, allows it to explicitly encode the classification semantics of labels. In
other words, the interpretation of the resulting formulas explicitly represents the



set of documents which are about the natural language labels. The translation
of prepositions is an approximation, as they may encode meaning, which only
partly can be captured by means of logical conjunction. For example, “life in
war” and “life after war” will collapse into the same logical formula, whereas
the classification semantics of the two labels is different. In this respect we are
different from [18], where DL roles are used to encode the meaning of labels. The
advantage of our approach is in that, while using a simpler subset of DLs, we
are able to explicitly capture the semantics of a large portion of the label data
in a real classification.

In order to estimate how much of the information encoded into the labels of
a real classification can be captured using our approach, we have conducted a
grammatical analysis of the DMOZ classification. For doing this, we have used
the OpenNLP Tools tokenization and POS-tagging library [17], which reports
to achieve more than 96% accuracy on unseen data. In Table 2 we show POS
statistics of tokens. Note, that about 77.59% of the tokens (nouns and adjectives)
become concepts, and about 14.69% (conjunctions and prepositions) become
logical connectives of LC . WordNet coverage for common nouns and adjectives is
quite high, and constitutes 93.12% and 95.01% respectively. Detailed analysis of
conjunctions and prepositions shows that about 85.26% of them are conjunctions
“and”, and about 0.10% are conjunctions “or”. In our analysis we found no words
or phrases which would result into the logical negation. Only about 4.56% of the
tokens are verbs and adverbs in all their forms.

POS Share

Common nouns 71.22%
Proper nouns 0.18%
Adjectives 6.19%
Conjunctions and prepositions 14.69%
Verbs, adverbs 4.56%
Other POSs 3.16%

Table 2. DMOZ token statistics

Note, that the propositional nature of LC allows us to explicitly encode about
90.13% of label data in DMOZ (i.e., nouns, adjectives, conjunctions “and” and
“or”). Still, this is a rough understated estimation, as we did not take into
account multi-word nouns. In fact, manual analysis of the longest labels, as well
as of the ones with verbs, shows that the majority of these labels represents
proper names of movies, games, institutions, music bands, etc.

5 Disambiguating Edges

As discussed in Section 2, the classification semantics of links codifies the fact
that child nodes’ labels are always considered in the context of their parent



nodes. This means that the meaning of a non-root node is the set of documents,
which are about its label, and which are also about its parent node. We encode
the classification semantics of links as a property of nodes in FCs, which we call
the concept at a node. We write Ci to refer to the concept at node ni, and we
define this notion as:

Ci =
�

lFi if ni is the root of FC
lFi � Cj if ni is not the root of FC, where nj is the parent of ni

(1)

There may be two meaningful relations between the concept of a parent node,
and the label of its child node, as represented in Figure 2:

– in case (a) the label of the child node is about the parent node, but it is also
about something else. In this case the parent node specializes the meaning
of the child node by bounding the interpretation of the child node’s label
with the interpretation of the concept of the parent node. For instance, think
about a classification where the root node is labeled “Italy” and its sole child
node is labeled “Pictures” (see Figure 2-a). A human can understand that
the meaning of the child node is “pictures of Italy” and not “pictures of
Germany”, for example. In the corresponding FC this knowledge is encoded
into the concept at node C2 = [italy ∗ � picture∗];

– in case (b) the child node represents a specification of the parent node, and
their relation can be, for instance, an “is-a” or a “part-of” relation. Note, that
in this case, differently from case (a), the parent node does not influence the
meaning of the child node. Suppose that in the previous example the child
node’s label is “Liguria” (see Figure 2-b). A human can understand that the
meaning of this node is the same as of its label. In the corresponding FC this
knowledge is encoded into the concept at node C2 = [italy ∗ � liguria∗],
which can be simplified to C2 = [liguria#1], taking into account that both
words “Italy” and “Liguria” have only one sense in WordNet, and given
that the corresponding axiom [liguria#1 � italy#1] is memorized in
some background knowledge base.

Fig. 2. Edge semantics in FCs



Note, that applying Equation 1 recursively, we can compute the concept at
any non-root node ni as the conjunction of the labels of all the nodes on the
path from the root of the FC, n1, to ni. This corresponds to how the notion of
concept at a node is defined in [7], namely:

Ci = lF1 � lF2 � . . . � lFi (2)

The concept at a node encodes, but only to a certain extent, the path from the
root to the node. In fact, there may be more than one way to reconstruct a path
from a concept. Atomic concepts in a concept at a node may be “distributed”
differently among different number of nodes, which, in turn, may have a different
order in the path. The number of nodes may range from one, when the concept
at the node is equivalent to the node’s label, to the number of clauses in the
DNF equivalent of the concept. However, all the possible paths converge to
the same semantically equivalent concept. Consider, for instance, node n8 in the
classification shown in Figure 1. All the following paths will converge to the same
concept for this node5: “top:publishing and printing:business books:computers”,
“top:business:publishing and printing:computer books”.

We use the notion of concept at a node to define a further new structure
which we call Normalized Formal Classification (NFC). A NFC is a rooted tree
NFC = �N, E,LN � where N is a finite set of nodes, E is a set of edges on
N , and LN is is a finite set of labels expressed in LC , such that for any node
ni ∈ N , there is one and only one label lNi ∈ LN and lNi ≡ Ci.

Note, that the main characteristic of NFCs, that distinguishes them from
FCs, is the fact that labels of child nodes are always more specific than the
labels of their parent nodes. Particularly, if a taxonomic classification, i.e., a
classification with only “is-a” and “part-of” links, is converted into a FC, then
the latter is also a NFC. Apart from this, NFCs have a number of important
properties relevant to classifications, discussed below:

– the classification semantics of the labels of nodes is the set of documents
which can be classified in these nodes. We underline the “can” since, as we
discuss in the next section, documents which are actually classified in the
nodes are often a subset of the classification semantics of the labels;

– two nodes, representing in a classification the same real world entities, will
have semantically equivalent labels in the NFC. This fact can be exploited for
automatic location and/or prevention of adding of such “duplicate” nodes.
As an example, consider the different paths that lead to the same concept
at a node as described earlier in this section;

– NFCs are full-fledged lightweight ontologies, suitable for the automation of
the core classification tasks, such as document classification, as it is discussed
in the following section.

5 For sake of presentation we give these examples in natural language.



6 Document Classification

Before some document d can be classified, it has to be assigned an expression in
LC , which we call the document concept, written Cd. The assignment of concepts
to documents is done in two steps: first, a set of keywords is retrieved from the
document using text mining techniques (see, for example, [19]); the keywords
are then converted into a concept using similar techniques to those used in the
translation of natural language labels into labels in FCs (see Section 4).

We say that node ni is a classification alternative for the classification of
some document d with concept Cd, if Cd � lNi . In fact, if this relation holds,
then the document is about the classification node, whose semantics is encoded
in the label of the NFC. For any given document d and a NFC, we compute the
set of classification alternatives for d in the NFC as follows:

A(Cd) = {ni|Cd � lNi } (3)

By computing Equation 3, we can automate step 3 described in Section 2. The
automation of step 4, i.e., making classification choices, depends on what clas-
sification algorithm is used. Below we show how it can be automated for some
set A of classification alternatives if the get-specific rule (see Section 2) is used:

C(A) = {ni ∈ A|�nj ∈ A (i �= j), such that lNj � lNi } (4)

The set C(A) includes all the nodes in the NFC, whose labels are more general
than the document concept, and more specific among all such labels. As labels
of child nodes in NFCs are more specific than the labels of their parent nodes,
C(A) always consists of nodes which lie as low in the CNF tree as possible, and
which are still classification alternatives for the document. Note, that the get-
specific rule applies not only to nodes located on the same path from the root,
but also to nodes located in different branches. For instance, a document about
computer graphics will not be classified in the node “top:computers” if the more
specific node “top:arts:computers” exists.

Formula 4 stipulates that the set of documents classified in some node ni

may (and, in most cases will) be a subset of the interpretation of its label lNi .
In fact, the set of documents which are actually classified in ni excludes those,
which belong to the interpretation of labels, which are more specific than lNi . We
encode this set in the concept Di which univocally identifies the set of documents
classified in node ni, and, therefore, defines the classification semantics of ni in
the NFC. We compute Di as follows:

Di = lNi � ¬
�

(lNj |j �= i, lNj � lNi ) (5)

Computation of Equations 3, 4 and 5 requires verifying whether subsumption
holds between two formulas in LC . As discussed in [6], a problem, expressed in
a propositional DL language, can be translated into an equivalent propositional
satisfiability problem, and can therefore be solved using sound and complete
reasoning procedures of a SAT decider. The translation rules from LC to a



propositional language transform atomic concepts into propositions, less gener-
ality into implication (i.e., [A � B] ⇒ [A → B]), disjunctions and conjunctions
into logical or’s and and’s respectively (e.g., [A�B] ⇒ [A∨B]), and so on. Inter-
ested readers are referred to [6] for details. Thus, if we need to check whether a
certain relation rel holds between two concepts A and B, given some knowledge
base KB, which represents our a priori knowledge, we construct a propositional
formula according to the pattern shown in Equation 6, and check it for validity:

KB → rel(A,B) (6)

The intuition is that KB encodes what we know about concepts A and B, and
rel(A,B) holds only if it follows from what we know. In our approach KB is built
as a set of axioms which encode the relations that hold between atomic concepts
in A and B. As discussed in Section 4, atomic concepts in LC are mapped to
the corresponding natural language words’ senses. These senses may be lexi-
cally related through the synonymy, antonymy, hypernymy (i.e., the “kind-of”
relation, e.g., car is a kind of vehicle), or holonymy (i.e., the “part-of” relation,
e.g., room is a part of building) relations. These relations can be translated into
axioms, which explicitly capture the classification semantics of the relation that
holds between the two senses. Thus, for instance, the set of documents which
are about cars is a subset of the set of documents which are about a hypernym
of the word “car”, vehicle. The idea, therefore, is to find the lexical relations
using WordNet, and to translate synonymy into logical equivalence, antonymy
into disjointness, hypernymy and holonymy into subsumption in LC .

Let us consider an example. Recall the classification in Figure 1, and sup-
pose that we need to classify the following book: “Java Enterprise in a Nut-
shell, Second Edition”, whose concept is [java#3 � enterprise#2 � book#1].
It can be shown, by means of propositional reasoning, that the set of classifi-
cation alternatives includes all the nodes of the corresponding NFC. For sake
of space we provide concrete formulas only for nodes n7 and n8, whose la-
bels are lN7 = [computer ∗ �programming ∗ �language ∗ �java∗], and lN8 =
[business∗�[publishing∗�printing∗]�publishing∗�books∗�computer∗].
We can extract the following knowledge from WordNet: the programming lan-
guage Java is a kind of programming languages, and it is a more specific concept
than computer is; books are related to publishing; and enterprise is a more spe-
cific concept than business is. We encode this knowledge in the following axioms:

a1 = [java#3 � pr language#1]; a3 = [book#1 � publishing#1];
a2 = [java#3 � computer#1]; a4 = [enterprise#1 � business#2].

We then translate the axioms and the labels into the propositional logic lan-
guage, and we verify if the condition in Formula 3 holds for the two labels by
constructing two formulas, following the pattern of Equation 6, as shown below:

(a2 ∧ a3 ∧ a4) → (Cd → lN8 ); (a1 ∧ a2) → (Cd → lN7 ).
Then, we run a SAT solver on the above formulas, which shows that they are
tautologies. It means that both nodes n7 and n8 are classification alternatives for
the classification of the book. Among all the classification alternatives, only these



two nodes conform to the get-specific rule, and, therefore, are final classification
choices for the classification of the book. The latter can be shown by computing
Equation 4 by means of propositional reasoning.

Note, that the edges of the NFC are not considered in document classification.
In fact, the edges of the NFC become redundant, as their information is implicitly
encoded in the labels. As from Section 5, there may be several paths to the
same concept. Analogously, given a set of labels, there may be several ways to
reconstruct the set of edges of a NFC. However, from the classification point of
view, all these NFCs are equivalent, as they classify documents identically.

7 Related Work

In our work we adopt the notion of concept at a node as first introduced in [6]
and further elaborated in [7]. Moreover, the notion of label of a node in a FC,
semantically corresponds to the notion of concept of a label introduced in [7].
In [7] these notions play a key role in the identification of semantic mappings
between nodes of two schemas. In this paper, these are the key notions needed
to define NFCs.

This work as well as the work in [6, 7] mentioned above is crucially related
and depends on the work described in [4, 13]. In particular, in [4], the authors
introduce the idea that in classifications, natural language labels can be trans-
lated in logical formulas, while, in [13], the authors provide a detailed account
of how to perform this translation process. The work in [6, 7] improves on the
work in [4, 13] by understanding the crucial role that concepts at nodes have in
matching heterogeneous classifications and how this leads to a completely new
way to do matching. This paper, for the first time, recognizes the crucial role
that the ideas introduced in [4, 6, 7, 13] have in the construction of a new theory
of classification, and in introducing the key notion of FC.

A lot of work in information theory, and more precisely on formal concept
analysis (see, for instance, [24]) has concentrated on the study of concept hier-
archies. NFCs are what in formal concept analysis are called concept hierarchies
with no attributes. The work in this paper can be considered as a first step to-
wards providing a computational theory of how to transform the “usual” natural
language classifications into concept hierarchies.

The classification algorithm, proposed in this paper, is similar to what in the
DL community is called realization. Essentially, realization is the task of finding
the most specific concept(s) an individual object is an instance of given a hier-
archy of concepts [3]. The fundamental difference between the two approaches
is in that in DL the concept hierarchy is not predefined by the user, but is built
bottom-up from atomic concepts by computing the partial ordering of the sub-
sumption relation. In our case, the underlying classification structure is defined
solely by the user.

In Information Retrieval, the term classification is seen as the process of ar-
ranging a set of objects (e.g., documents) into categories or classes. There exist
a number of different approaches which try to build classifications bottom-up,



by analyzing the contents of documents. These approaches can be grouped in
two main categories: supervised classification, and unsupervised classification. In
the former case, a small set of training examples needs to be pre-populated into
the categories in order to allow the system to automatically classify a larger set
of objects (see, for example, [2, 15]). The latter approach uses various machine
learning techniques to classify objects, for instance, data clustering [9]. There
exist some approaches that apply (mostly) supervised classification techniques to
the problem of documents classification into hierarchies [11, 21]. The classifica-
tions built following our approach are better and more natural than those built
following these approaches. In fact, they are constructed top-down, as chosen
by the user and not constructed bottom-up, as they come out of the document
analysis. Our approach has the potential, in principle, to allow for the automatic
classification of (say) the Yahoo! documents into the Yahoo! web directory.

8 Conclusions

In this paper we have introduced the notion of Formal Classification, namely
of a classification where labels are written in a propositional concept language.
Formal Classifications have many advantages over standard classifications all
deriving from the fact that formal language formulas can be reasoned about far
more easily than natural language sentences. In this paper we have highlighted
how this can be done to perform document classification. However much more
can be done. Our future work includes testing the feasibility of our approach with
very large sets of documents, such as those classified in the DMOZ directory, as
well as the development of a sound and complete query answering algorithm.
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