

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

RELBAC: RELATION BASED ACCESS CONTROL

Fausto Giunchiglia, Rui Zhang and Bruno Crispo

August 2008

Technical Report # DISI-08-040

Also: published in The International Conference on Semantics,
Knowledge and Grid (SKG) Bijing, 2008

.

RelBAC: Relation Based Access Control
Fausto Giunchiglia, Rui Zhang, Bruno Crispo

Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento
Via Sommarive, 14 I-38050 POVO, Trento Italy
{fausto,zhang,crispo}@disi.unitn.it

Abstract— The Web 2.0, GRID applications and, more recently,
semantic desktop applications are bringing the Web to a situation
where more and more data and metadata are shared and made
available to large user groups. In this context, metadata may
be tags or complex graph structures such as file system or
web directories, or (lightweight) ontologies. In turn, users can
themselves be tagged by certain properties, and can be organized
in complex directory structures, very much in the same way as
data. Things are further complicated by the highly unpredictable
and autonomous dynamics of data, users, permissions and access
control rules. In this paper we propose a new access control
model and a logic, called RelBAC (for Relation Based Access
Control) which allows us to deal with this novel scenario. The
key idea, which differentiates RelBAC from the state of the
art, e.g., Role Based Access Control (RBAC), is that permissions
are modeled as relations between users and data, while access
control rules are their instantiations on specific sets of users
and objects. As such, access control rules are assigned an arity
which allows a fine tuning of which users can access which data,
and can evolve independently, according to the desires of the
policy manager(s). Furthermore, the formalization of the RelBAC
model as an Entity-Relationship (ER) model allows for its direct
translation into Description Logics (DL). In turn, this allows us
to reason, possibly at run time, about access control policies.

I. INTRODUCTION

Web service applications, GRID applications, the Web 2.0
and Social Web applications, e.g., FaceBook, MySpace, and
more recently, semantic desktops (e.g., IRIS [1], Haystack
[2], Nepomuk [3]) are bringing the Web to a situation where
more and more user data and metadata are made available
for sharing. In this context metadata may be tags, attributes
of files, or complex graph structures such as file system or
web directories, or (lightweight) ontologies. In turn, users
(actually user descriptions) can themselves be tagged by
certain properties, they can be organized in groups, e.g., as
the friends of a person, or as those people who are interested
in a specific topic, e.g., “Peace in the Middle East”, or in the
results of a specific scientific experiment. Groups themselves
can build complex graph structures (e.g., lightweight people
ontologies written in FOAF), often across and independently
of organizational boundaries, and also independently of how
data and metadata are organized. This situation is further
complicated by the high unpredictable dynamics where data,
users, and access permissions change independently.

This new scenario presents a set of characteristics which
make it radically different from previous applications, e.g.,
Intranet applications, in particular:

• Data and users are organized in complex structures;
typically hierarchical structures, i.e., direct acyclic graphs

(DAGs) plus constraints and complex links among user
groups and data. Permissions themselves are organized in
DAGs, needed to take into account, among other things,
the time-variance of the application context [4], [5]. Thus,
as an example, one would like to distinguish in a uniform
way (and to reason about it, see item below) about Read,
Read during the week-end, and Read at night.

• Permissions, and access control policies evolve au-
tonomously from data and users. This requires treating
them as first class objects. As a consequence, it must
be possible to add, delete or change a permission or a
rule independently from users and data (differently from
what happens in Role Based Access Control (RBAC) [6]).
Furthermore a much more refined control on the arity of
access control rules must be enforced. In particular, it
must be possible to say that, e.g., m users in a pre-existing
group can access n data in a pre-existing class.

• Systems are inherently open and it is impossible to know,
at design time, the future evolution of data, metadata,
users, user groups and the consequent access control
mechanisms. Data, metadata, users and user groups are
subject to strong unpredictable dynamics. This requires
complex reasoning about policies, at run time, while the
system is in operation.

In this paper we propose a new access control model and
a logic, called RelBAC (for Relation Based Access Control)
which allows us to deal with this novel scenario. The key
idea, which differentiates the RelBAC model from the state of
the art, is that permissions are modeled as relations between
users (called subjects in access control terminology) and data
(also called objects) while access control rules are their instan-
tiations, with arity, on specific sets of users and objects. We
define the RelBac model as an Entity Relationship (ER) model
[7] thus defining permissions as relations between classes of
subjects and classes of objects. Finally, and this is the last
component of our approach, by exploiting the well known
translation of ER diagrams into Description Logics (DL) [8]
we define a (Description) logic, called the RelBAC Logic,
which allows us to express and reason about users, objects,
permissions, access control rules and policies. In turn, this
allows us to reason about policies by using state of the art,
off-the-shelf, DL Reasoners, e.g., Pellet [9]. Thus, for instance
the permission Use can be modelled as a binary relation which
holds for all the pairs < subj, obj > where the subject subj can
Use the object obj, while Student � ∃Use.PC is an access

Fig. 1. The ER Diagram of the RelBAC Model.

control rule (written in DL) which states that all students
should have access to at least one PC among all the PCs which
are available. Furthermore the policy consisting of the above
control rule plus the rule Student �≤ 1Use.PC states that
students can use one and most one PC among all PCs which
are available to them. Notice that the above policy states that
in different times the same student is allowed to use different
PCs.

The rest of the paper is structured as follows. Section
II describes the RelBAC model. Section III introduces the
RelBAC logic in all its articulations, and in particular it
describes how to define complex sets of users, objects and
permissions, and how to define hierarchies, and (general and
ground) policies. This section also describes how to represent
in RelBAC the most common type of policies used so far
in access control. Section IV is an early discussion about
RelBAC, how to use it in practice, about its underlying ideas
and of how it compares with the existing frameworks. Section
V describes the related work and Section VI describes the
future work and provides some conclusions.

II. THE RelBAC MODEL

We represent the RelBAC Model with the ER Diagram in
Figure 1. Let us analyze its components in detail.
SUBJECT (or USER): a set of subjects, namely the set of those
users who can perform operations on objects;
GROUP: any subset, or group, or community of users;
OBJECT: a set of all objects, namely the set of all data (and/
or resources) on which users can perform operations;
CLASS: any subset, or class of objects;
IS-A1 on SUBJECT, GROUP, OBJECT, CLASS: as from
Figure 1, SUBJECT and OBJECT can have many subsets, in a
one-to-many relationship while GROUP and CLASS, being in a
many-to-many ISA hierarchy with themselves, form a Direct

1By IS-A, also written ISA, we mean here any subset of a given set
of entities (like in the case of SUBJECT, OBJECT, GROUP, CLASS), or of
pairs of entities (as in the case of PERMISSION), thus slightly stretching the
original meaning of ISA.

Fig. 2. SUBJECT and OBJECT Hierarchies.

Acyclic Graph (a DAG). This part of the model is what allows
us to capture the fact that data and users can be organized in
arbitrarily complex hierarchies;
PERMISSION: the intuition is that a PERMISSION is an
operation that users can perform on objects. To capture this
intuition a PERMISSION is named with the name of the
operation it refers to, e.g., Write, Read operation or some
more high level operation, e.g., CanSign. According to the ER
diagram in Figure 1, a PERMISSION is a relation between
GROUP and CLASS. This is a first level of flexibility in the
definition of access control policies: users and data evolve and,
a posteriori, we can add, delete or modify a permission (on
the current sets of users and data);
IS-A on the aggregation of SUBJECT, PERMISSION and
OBJECT: PERMISSIONS can be hierarchically organized in
a many-to-many relation and form a DAG. This captures the
intuition that the permission to perform a certain operation
may imply the permission of performing another, intuitively
weaker, operation. As a simple example, a Write permission
may imply a Read permission, which mathematically means
that all the subject/ object pairs in Write are also in Read, but
not necessarily vice versa.
(ACCESS CONTROL)RULE: the intuition is that an ACCESS
CONTROL RULE, or simply a RULE, associated to a
PERMISSION is the instantiation of PERMISSION to a
specific set of users and a specific set of objects. We have
two possible types of RULEs. A user- centric RULE is defined
by saying that a specific set of users is a subset (or a superset
or the set) of all subjects which can apply a certain operation
to a specific set of objects. Dually, an object- centric RULE
is defined by saying that a specific set of objects is a subset
(or a superset or the set) of all objects which can be applied
a certain operation by a specific set of users. Access control
rules have an arity. Thus a RULE may be many-to-many. one-

to-many, zero-to-many, or of some other arity. In Figure 1 we
have represented the case many-to-many just to represent the
most powerful relation.
POLICY: policies (not represented in the diagram) are sets of
access control rules.

As an example of RelBAC model, consider the situation in
Figure 2 where Rui is a person who has on his PC a directory
of contacts (on the left) which represents his social network
and a file system (on the right) which contains various items
including code, publications and entertainment material. In
Figure 2, nodes with mark ‘+’ represent a set (of people, of
data), while nodes with mark ‘i’ represent a single entity (a
person or a file). Thus, for instance, as from the picture, Rui
has a colleague Hao, who’s a coder in KnowDive research
group. Rui has also another colleague, Ilya, who’s a manager
in the group; he has some friends who are soccer fans, some
of which like the team AC Milan while some others like
Juventus (another Italian team). He also has some close friends
classified in his social network.

Consider now Figure 3. Permissions form a complex hi-
erarchical structure. Similarly to Figure 2, nodes with mark
‘+’ represent sets (of subject/ object pairs), while nodes with
mark ‘i’ represent single subject/ object pairs. The hierarchy
on the left in Figure 3 states that the Read permission is more
general that the Write and Delete permissions, in other words,
that having a Write or a Delete permission implies having also
a Read permission. It also states (last item) that Hao can Read
Shrek II, without necessarily being able to Write or Delete it.

Consider now the hierarchy on the right in Figure 3. This
hierarchy shows how it is possible to represent contextual fac-
tors as direct conditions in a hierarchy. It states, for instance,
that the users who can connect on weekdays are are a subset
of those who can have some connect capability, and the same
for those who can connect on weekends. Notice that in this
hierarchy the root Connect is less general than its descendants
and so on for all nodes and paths. In particular the people that
will always be able to Connect will be a subset of those who
will be able to Connect on week days or on weekends. The
two hierarchies in Figure 3 have therefore opposite polarity,
starting respectively from the relation with the largest and the
smallest extension. The arrows, by going from the largest to
the smallest relation, represent just this fact.

The ER Diagram modeling (a part of) the situation in the
Figures 2, 3 also providing the missing information is depicted
in Figure 4.2 As it can be noticed, Read is defined between
Knowdive and Work and used to define a many-to-many
access control rule; all the other permissions define one-to-one
rules, and Update is less general of both Write and Delete.

III. THE RelBAC LOGIC

The possibility to translate ER diagrams into Description
Logics allows for a direct formalization of the RelBAC model
into a family of logics for access control, that we also call

2To simplify the picture, as it is sometimes done, we draw the aggregation
box only around the permission.

Fig. 3. Permission Hierarchies.

RelBAC. This is a family of logics, rather than a single logic as
different policies correspond to different logics, each with its
own expressiveness and computational properties (see [8] for a
survey on DL).3 This formalization is quite natural and is done
by modeling Subjects (Users) and Objects as Concepts (whose
interpretations are, respectively, sets of subjects and objects)
and permissions as DL Roles (whose interpretations are binary
relations between sets of subjects and sets of objects).

In the following of this section we describe how it is
possible to define user groups, object classes and permissions
(Section III-A), we show how it is possible to build hierarchies
of users, objects and permissions (Section III-B), and then
show how to formalize general access control rules (Section
III-C) and instance specific access control rules (Section III-
D). Finally we conclude this section by showing how it is
possible to formalize in RelBAC the type of access control
rules used in RBAC) (Section III-E).

From a logical point of view most of the contents of the
following subsections are just a re-statement of the very well
known DL language and semantics. The added value is the
re-interpretation of DL concepts in access control terms and
the evidence that this paper provides of how natural this
interpretation is.

A. Defining Users, Objects, Permissions
Sets of users and objects are formalized as atomic concepts.

Permissions are formalized as DL roles (not to be confused
with the RBAC roles!):

U1, ..., Um | (users)
O1, ..., On | (objects)
P1, ..., Ps | (permissions)

where Ui(i = 1, ...,m) are concepts for users, such as Friend
or KnowDive; Oj(j = 1, ..., n) are concepts for objects,

3In this paper we only show the formalization of the RelBAC model into
the RelBAC logic without getting into the details of how different access
control policies map into logics of different expressibility and computational
complexity. This will be the topic of future papers.

Fig. 4. A portion of the ER Diagram of Figures 2,3.

such as V ideo or Code; Pk(k = 1, ..., s) are roles for per-
missions defining user-object pairs. Examples of permissions
are conventional file operations such as Read and Write or
some other field functions such as Cash and Audit. User and
Object are the concepts for all users and objects, respectively.
From now on, we use italic starting with a Capital letter as
concept and role names.

RelBAC provides the possibility to define complex groups
of users, complex classes of objects and complex relations in
terms of the basic sets User, Object, Ui, Oi and permissions
Pi defined above. The RelBAC formation rules are:

Ui, Oj | (atomic concepts for user or object)
Pk | (atomic permission)
� | (universal concept)
⊥ | (empty concept)

¬Ui,¬Oj | (atomic negation)
C �D | (conjunction)
∀Pk.C | (value restriction)
∀Pk.� | (limited existential quantification)
C �D | (disjunction)
∃Pk.C | (full existential quantification)

≥ nPk.C | (number restriction)
≤ nPk.C | (number restriction)

¬C | (negation of arbitrary complex concept)
¬Pk | (negation of permission)
P−1

k | (inversion of permission)

A full description of the above constructs is out of the goals

of this paper; the reader can refer to any standard book on
DL. Let us only make a few general observations. The first
is that assertions about users, objects and permissions are
embedded in a full propositional language which allows to
perform (propositional) reasoning (about policies) (the two
distinct items on negation have been kept, even if the second
implies the first, as they have very different expressibility and
complexity properties). The second is that we have a set of
quantificational constructs (i.e., ∀, ∃ but also ≥ nP , ≤ nP)
(whose meaning will be made precise below) which allow to
express the arity of relations. The third and last is that we can
negate permissions where, e.g., ¬Read is the set of all pairs
where a user cannot read an object, and that we can also take
the inverse of a relation where, e.g., Read−1 is the set of all
pairs where the object can be read by the user.

The above intuitions can be made precise by using the
standard DL semantics as follows. We start with the defintion
of Interpretation for the language defined above. An Inter-
pretation consists of an Interpretation Function I and a non
empty set ∆I (the Domain of Interpretation). ∆I contains
the set of users and objects UserI and ObjectI . Thus for
instance HaoI , RuiI ∈ UserI are the two users of name
Hao and Rui while code1.0I , Shrek III ∈ ObjectI are
examples of data. Then, any user group Ui is interpreted as
the set UI

i ⊆ UserI and similarly, for an object class Oj ,
we have OI

j ⊆ ObjectI . Finally, we interpret a permission
Pk as a binary relation P I

k ⊆ UserI × ObjectI . If we
consider, for instance, the hierarchy in Figure 3 we have that
�HaoI , Shrek III� ∈ V ideoI ⊆ EntertainI . Notice that in
general, we use italic words that begin with lower case letter
as instance names, with exceptions.

We can now define the semantics of the above constructs

as follows:

�I ⊇ UserI ∪ObjectI

⊥I = ∅
(¬Ui)I = ∆I \ UI

i

(¬Oj)I = ∆I \ OI
j

(C �D)I = CI ∩DI

(∀Pk.C)I = {a ∈ UserI | ∀b (a, b) ∈ P I
k → b ∈ CI}

(∃Pk.�)I = {a ∈ UserI | ∃b (a, b) ∈ P I
k }

(C �D)I = CI ∪DI

(∃Pk.C)I = {a ∈ UserI | ∃b (a, b) ∈ P I
k ∧ b ∈ CI}

(≥ nPk.C)I = {a ∈ UserI | |{b|(a, b) ∈ P I
k , b ∈ CI}| � n}

(≤ nPk.C)I = {a ∈ UserI | |{b|(a, b) ∈ P I
k , b ∈ CI}| � n}

(¬C)I = ∆I \ CI

(¬Pk)I = UserI ×ObjectI \ P I
k

(P−1
k)I = {(b, a) ∈ ObjectI × UserI | (a, b) ∈ P I

k }

where ‘| · |’ denotes the cardinality of a set, n ranges over non-
negative integers. Let us consider in detail the quantificational
constructs. We have that, e.g., ∀Read.V ideo denotes the set
of all users who can read (see) only videos, while ∃Read.�
denotes the set of who can read (in Figure 3, something in
Rui’s Semantic Desktop), ∃Read.V ideo denotes the set of
who can read (see) at least a video, ≥ 3Read.V ideo and
≤ 3Read.V ideo denote the set of those who can, respectively,
read (see) at least or at most three videos. The most important
observation is that the above constructs not only allow to
define complex sets of users out of the basic ones, e.g.
V ideo �Music but, through the quantifiers, they also allow
to define sets with the desired arity. As the following will
make clear, this is the basis on which access control rules are
defined.

B. Defining Hierarchies of users, objects and permissions
In RelBAC, we declare hierarchies as subsumption axioms,

namely as axions of the form (we limit ourselves only to one
direction of subsumption, dual arguments hold for the other
direction):

Ai � Aj

where Ai, Aj can be users, objects or permissions, whose
meaning is

AI
i ⊆ AI

j .

Thus for instance, some paths in the hierarchies in Figures 2,
3, are axiomatized as follows

Coder � KnowDive

Code � Work

Write � Read

Connect � Weekends

This allows to define partial orders ≥ on users, objects, and
permissions, as follows. A USER HIERARCHY (represented
in Figure 1 as the IS-A relation on SUBJECT and GROUP)
is formalized as

U1 ≥ U2 iff U1 � U2

A OBJECT HIERARCHY (represented in Figure 1 as the
IS-A relation on OBJECT and CLASS) is formalized as

O1 ≥ O2 iff O1 � O2

A PERMISSION HIERARCHY (represented in Figure 1 as
the IS-A relation on the aggregation of PERMISSION,
SUBJECT and OBJECT) is formalized as

P1 ≥ P2 iff P1 � P2

Notice that the direction of the partial order on users and
objects is opposite to that of subsumption; namely the smaller
a set is, the higher it is in the partial order. ≥ has been defined,
for users in particular, to mimic the RBAC partial order on
roles. Notice however that the two partial orders are radically
different, the first being a partial order on users, the second on
permissions. The intuition is that the larger sets of users will
have less permissions, and the same or objects. Dually, notice
that the partial order on permissions has the same direction
as that of RBAC. This definition is coherent with RBAC: the
more powerful permission the higher in the partial order. The
overall intuition is that sets of users and objects which are
smaller and therefore higher in their partial order are those
involved in the more powerful permissions.

C. Defining General Access Control Rules
Access control rules may take one of the following three

forms

C ≡ D

C � D

C � D

where: C ≡ D, to be read as “C is equivalent to D”, is
interpreted as CI = DI , C is either a group of users or
a group of objects, and D can be any formula constructed
following the syntax in Section III-A. Equivalence should be
used with a lot of attention and limited to those cases which
are self-evident (e.g., synonyms) such as ICTStudent ≡
ICTPeople � Student. Rules usually take the form of sub-
sumption formulas. In the following we will consider only one
direction of subsumption; dual arguments apply for the other
direction. A first set of paradigmatic examples can be defined
as follows:

U � ∃P.O (1)
O � ∃P−1.U (2)
U � ∀P.O (3)
O � ∀P−1.U (4)

For example, we can write:
1) Friend � ∃Download.Music to state that all close

friends can download some music,
2) Music � ∃Download−1.F riend to state that all music

can be downloaded by some friend,
3) Friend � ∀Download.Music to state that friends can

download only music,
4) Code � ∀Read−1.KnowDive to state that the code

can be read only by KnowDive members.
In RelBAC we can express cardinality in the rules as

follows:

U �≥ nP.O (5)
O �≥ nP−1.U (6)
U �≤ nP.O (7)
O �≤ nP−1.U (8)

For example, we can write:
1) KnowDive �≥ 1 Program.Code to state that each

KnowDive member should program for at least one
project code,

2) Code �≤ 2 Program−1.KnowDive to state that
each project code should be programmed by at most
2 KnowDive members,

As it can be easily noticed from the examples above, and
as also represented in the ER model in Figure 1, there are two
kinds of access control rules

1) User-centric access control rules (e.g., Rule (1)), namely
rules which define which users can perform an operation
P on a certain set of objects;

2) Object-centric access control rules (e.g., Rule (2)),
namely rules which define which objects can be applied
a certain operation P−1 by a certain set of users.

In the above notation we have assumed that all permissions are
defined from subjects to objects and therefore all object-centric
rules are defined in terms on inverse permissions. Of course,
in practice, the policy manager is free to define permissions
as she wants.

D. Defining Ground Access Control Rules
Most often one would like to define Ground Access Con-

trol Rules (and policies), that we also sometimes call Rules
involving Instances, namely statements about permissions of
specific users and/or objects. In turn ground rules may involve
individuals or sets of individuals.

Rules involving individuals (users of objects) can take one
of two forms

U(u), O(o) | (group or class assignment)
P (u, o), P−1(o, u) | (permission assignment)

with the following intended (formal) semantics (the cases not
considered are analogous):

(U(u))I = uI ∈ UI

(P (u, o))I = (u, o)I ∈ P I

The first associates a user to a group while the second assigns
a permission to a specific user and a specific object. We have
the following examples:

1) KnowDive(Rui) declares Rui to be a member of the
group KnowDive,

2) V ideo(Shrek II) states that the file Shrek II is a
video

3) Download(Hao, Shrek II) states that Hao can down-
load Shrek II;

To define ground rules about sets of individuals we need
some notation for sets and for computing the domain of a
permission. We have the following:

{a1, . . . , a2} | (set constructor)
P : o, P−1 : u | (fill constructor)

(P : o)(u), (P−1 : u)(o) | (membership constructor)

where ai can be a user or an object and the membership
constructor is the composition of the fill constructor and the
user assignment constructor, with the following semantics (the
cases with the inverse permission are analogous):

{a1, . . . , a2}I = {aI1 , . . . , aI2}
(P : o)I = {u ∈ UserI |(o, u) ∈ P I}

((P : o)(u))I = uI ∈ (P : o)I

Notice that the fill constructor P : o defines all users u
which have permission P on object o while the membership
constructor states that the user u has permission P on the
object o. The above definitions allow us to define ground rules
as follows:

U � P : o (9)
(P : o)(u) (10)
(∃P.O)(u) (11)
(∀P.O)(u) (12)
(≥ nP.O)(u) (13)
(≤ nP.O)(u) (14)

For example, we can write:
1) CloseFriend � Download : Shrek II to state that

close friends can download Shrek II ,
2) CloseFriend � ¬{Hao} � Download : Shrek II to

state that Hao is an exception to the previous policy;
3) {Hao, Ilya} � Download : Shrek II to enumerate

the two close friends who can download Shrek II ,
4) (Download : Shrek II)(Hao) to state that Hao can

download Shrek II ,

5) ∃Update.Beta(Hao) to state that Hao can update at
least a file of beta code,

6) ∀Upload.V ideo(Hao) to state that Hao can upload
only video,

7) ≥ 10Update.Beta(hao) to state that Hao can update
at least ten files of Beta code,

8) ≤ 15Download.V ideo(Hao) to state that Hao can
download at most fifteen videos.

Policies (15–20) can be symmetrically stated for objects
using inverse permissions, thus obtaining the following:

O � P−1 : u (15)
(P−1 : u)(o) (16)
(∃P−1.U)(o) (17)
(∀P−1.U)(o) (18)
(≥ nP−1.U)(o) (19)
(≤ nP−1.U)(o) (20)

E. Defining the Total Access Control Rule

The usual practice in access control, and specifically in
RBAC, is to construct policies as follows. First Roles are
defined as sets of permissions P over a specific set of objects
O; let us call this set, P (O). Then P (O) is assigned to
individual users u or sets of users U . This assignment is total
in the sense that all the users in U , or u herself in the case of
single user, can apply each permission in P to all objects in
O. We call this the Total Access Control (TAC) rule. The TAC
rule can be defined as the following RelBAC ground policy:

{P (u1, o1), . . . , P (u1, om), . . . , P (un, om)}.

In other words the TAC rule is defined as the set of all ground
access control rules P (ui, oj) for all users ui ∈ U and objects
oj ∈ O.

A more elegant formulation defines the TAC rule as a
policy which does not need to enumerate all instances. The
DL formula for the TAC rule has been constructed by Alex
Borgida and is defined as follows:

∀O.P ≡ ∀¬P.¬O

We have in fact that

(∀¬P.¬O)I = {u ∈ UserI | ∀o. (u, o) ∈ ¬P I → o ∈ ¬OI}
= {u ∈ UserI | ∀o. o ∈ OI → (u, o) ∈ P I}
= ∀O.P

We can therefore define a TAC general policy using one of
the following DL formulas:

U � ∀O.P (21)
O � ∀U.P−1 (22)

and similarly in the case of ground TAC policies:

(∀O.P)(u) (23)
(∀U.P−1)(o) (24)

We have the following examples:
1) Manager � ∀Code.Update states that all project

managers can update all the code,
2) Code � ∀Manager.Update−1 states that all the code

can be updated by all project leaders
It is interesting to notice that the two examples above of the
TAC rule, namely

Manager ≡ ∀Code.Update

Code ≡ ∀Manager.Update−1

are equivalent in the sense that they define exactly the same
set of policies. This is due to the fact that the TAC rule
(and its strong request to be able to access all objects) plus
the equivalence relation break the asymmetry intrinsic in
subsumption and in user versus object centric access control
policies (on this last item see below Section IV-C).

As a follow-up on the last observation, it can be noticed
that the RelBAC TAC rule which does exactly the same as the
rules used in RBAC is defined as follows:

U ≡ ∀O.P (25)

or, from above, equivalently,

O ≡ ∀U.P−1, (26)

but read Section IV-B on the use of equivalences in the
definition of access control rules.

IV. USING RELBAC

How should we use RelBAC in practice? Isn’t RelBAC just
the (n+1) Logic for access control? More precisely, how can
we use the added expressibility of RelBAC policies? This is
still too early to judge and a lot of work has to be done in
order to provide an answer to this question and, ultimately, to
judge the real usefulness of RelBAC. However a few comments
and observations can already be done. Let us analyze them in
some detail.

A. Quantifiers in policies?

The first observation is concerned with the role of quanti-
fiers. Why should they be used at all? They have been very
successfully used in data bases, but in access control they
are completely avoided as policies are implicitly universally
quantified (see Section III-E). Do we really need them? Maybe
access control relations do not need the level of expressibility
needed in data bases and information systems.

Let us consider, as an example, the following access control
rule

Student � ∃Use.PC

which states that students should be able to use at least one
PC. We are stating that any student in principle could use all
PCs (as in the TAC rule) but that what really matters is that
she has access to one. And the above policy could be made
stronger, using number restrictions, by saying that a student
should have access to exactly one PC or, using the universal
quantifier, by saying that students can use only PCs and that
therefore, e.g., they cannot use personal assistants.

Of course the same effect can be obtained in the existing
systems, e.g., RBAC, by checking these constraints at run time.
But in this case this constraint would be embedded in the
code and it would be impossible to reason about it. Notice
that ER diagrams have been invented just for providing high
level semi-formal specifications of information systems and
Description Logics have been defined in order to perform
automated reasoning about their properties. Maybe, in the
past, there was no much need of high level specifications of
the kind allowed by ER diagrams and even less of reasoning
about them. But the increasing number of open, dynamically
evolving systems, with strong access control requirements,
which are among the main motivations for this work, seem
to lead in this direction.

B. Subsumption policies?
In state of the art access control systems, policies are stated

as equivalences. In other words, in any moment in time,
a given set of users is given exactly a set of permissions
on a precisely defined set of objects. In RelBAC we have
suggested to minimize equivalences and to concentrate instead
on subsumption policies (Section III-C). This suggestion is
a consequence of the past experience which has shown that
stating properties (in our case policies) as equivalences leads
into specifications which are too rigid, hard to maintain and
that can easily create difficulties (e.g., generate an inconsistent
set of policies). And this is more and more true the more
complex systems are, and the more dynamics there are (with
the need, each time a policy is changed, to check that all
desired properties are satisfied).

Consider for instance the following access control rule:

Student ≡ ∃Use.PC.

Suppose that, by chance, it happens that students may also use
a palmar. One would like to add the following policy

Student � ∃Use.Palmar

but this would lead an inconsistent theory (under the assump-
tion that palmars are different objects from PCs), while this
would have not been the case if we had used the corresponding
subsumption policy, as written in the previous subsection.
Dually, it is possible to assert the following rule

Student � ∃Use.HPC

where HPC is an acronym for High performance Computer,
and add later further policies which restrict the extension of
Student just to the correct set of students.

Again, as in the previous subsection, similar effects could
be obtained programmatically by dynamically controlling the
extensions of the relevant sets of users and objects but, again,
this would make it impossible to reason about them at the
policy level. The further (usual) advantage of stating a policy
in a logical specification, instead of embedding it into the code,
is that it can be (easily) changed, contrarily to the latter case
where the policy is hardwired in the system code.

C. User and Object centric policies
Prior to the success of RBAC and the most recent access

models for access control, this task was done by using Access
Control Matrix [10]. A main advantage of this approach was
that the Access Control Matrix could be analyzed by rows
or by columns. By looking at the rows one would take the
users’ perspective and analyze their capabilities, by looking
at the columns and one would take the objects’ perspective
and analyze their access control lists. One main problem was
scalability: in large applications the large number of subject/
object pairs, most of which were irrelevant, made this approach
unfeasible in practice. RBAC solved this problem by splitting
subjects from objects via roles. This however leads to a user
centric view of policies where the key component is the
definition of RBAC user roles.

Instead, RelBAC splits subjects from objects by defining
permissions as relations. As the previous sections make clear,
the role of users and objects is completely symmetric and
one can symmetrically define user-centric or object-centric
policies. In practice, the policy admnistrator can look at (our
version of) capabilities or at (our version of) access control
lists. It is important to notice that in the Web we find more
and more applications, e.g., Wikipedia, various content portals,
where the space of users is quite flat (i.e., most of the users
are undistinguished users, often anonymous, which navigate
the Web) while data form a huge space of valuable content
whose access needs to be put more and more in control (think
of instance of the sensitive topics, e.g., sex).

D. Scalability
But, will RelBAC scale in practice? This issue is fundamen-

tal not only because the current state of the art, e.g., RBAC,
has been vey successful on this issue, but also because the
new full connectivity scenarios are bringing us to applications
where the size of users and data is far beyond the existing
applications.

The answer to this question must be split in two parts:
1) ground policies.
2) general policies.
Let us consider these two issues in turn. According to our

first implementation of RelBAC, ground policies in RelBAC
can be implemented, using, e.g., a relational data base, by
using practically the same ideas as RBAC, and with very
much the same level of efficiency. In practice the triples

�S, O, P � implementing RelBAC access control rules can be
implemented as pairs �S, P (O)�, very much in the same
way as the rules used in RBAC. Also the RelBAC policy
maintenance problem is basically the same and the system
administrator can be provided an interface which looks very
much the same as in RBAC.

Things change radically at the level of general policies. Here
there are many concurrent issues. The first is the number of
policies. On this issue things look promising. In fact even if
RelBAC policies are inherently more expressive, they extend
naturally one of the fundamental features which made RBAC
very successful, i.e, the hierarchy on roles and the propagation
of permissions, to users, objects and permissions (see Section
III-C), which in turn leads to the possibility of generation in
RelBAC of what we could call Hierarchical Policies. Consider
for instance a policy of kind (1) from Section III-C (the same
argument applies also to all the other policies):

U1 � ∃P1.O1.

This policy also implies the following set of policies

U2 � ∃P2.O2.

for any U2 such that U2 ≥ U1, for any O2 such that O1 ≥ O2,
and for any P2 such that P2 ≥ P1. In other words, the
number of subsumption policies can be minimized by taking
the biggest possible group of users, the smallest possible set
of objects and the most powerful permission. All policies
involving any subgroup, any superset of objects and any
less powerful policy are automatically implied. As a simple
example based on the hierarchies in Figures 2,3, consider the
following policy

Knowdive � ∃Update.V ideo

This policy implies that all Coders and Managers not only
can Update but they can also Delete and Read some of the
material on Rui’s Semantic Desktop.

As a second example, the following (equivalence version of
the) TAC rule

Knowdive ≡ ∀V ideo.Update

states that all the people in the KnowDive group and therefore
all Coders and Managers not only can Update but they can
also Delete and Read all Videos on Rui’s Semantic Desktop
and nothing more.

Furthermore, in our first implementation of RelBAC, we
have implemented user and object directories as Lightweight
Ontologies [11] (also called Formal Classifications [12], [13])
and performed some preliminary evaluations of the possibility
of automatically classifying users and objects in directories
and of automatic generation of permissions based on the user
interests, exploiting the Semantic Matching technology [14],
[15], [16], [17], [18], [19]. The results, though preliminary,
look very promising; future papers will investigate this venue
of research. It must be pointed out that this research line, if

successful, will allow us to share access control policies using
Web standard languages, e.g., OWL.

V. RELATED WORK

The state of the art to which we need to refer to is
definitely RBAC [6].4 The amount of work which has been
done on RBAC and its level of development is incomparably
high compared to that of RelBAC (see, e.g., [21], [22], [23]
or [24]). Therefore a meaningful comparison can be made
only on the basic underlying intuitions. As already hinted
in the previous sections (and emphasized in the introduction
and the conclusions) The main difference of RelBAC with
respect to RBAC is that the former models permissions as
ER relations thus making them first class objects (which can
evolve independently of users and objects), and thus allowing
for arity aware access control policies. The further main
difference is that this allows for a direct embedding on policies
into a (Description) Logic which allows to reason about them.
These two ingredients are among what we believe are the main
recipes for addressing the complication of the current new
GRID and Web open, highly dynamic applications.

However, in our opinion, a much more interesting compar-
ison between RBAC and RelBAC can be made by analyzing
their similarities rather than their differences. The key observa-
tion is that RelBAC can be seen a natural extension of RBAC
obtained exactly by adding what in the previous paragraph
were listed as the main differences, namely arities in access
control rules and the direct embedding of policies into a logic.
On top of this, our preliminary experiments, which seem to
highlight a substantial similarity in the implementation (of
ground policies) and in the user interaction (see Section IV-
D), make us hope that in the end it will be possible to use
RelBAC as as some kind of enhanced RBAC.

A lot of work has also been developed towards provid-
ing logical frameworks which would allow to reason about
RBAC based policies, see, e.g., [25], [26], [27]. Besides the
differences in the underlying logic and in in the specifics of
the formalizations, in part also an obvious consequence of
the differences existing between the RBAC and the RelBAC
models, it is here worth mentioning that in this previous work
the logical frameworks have been added on top of RBAC, while
RelBAC is defined natively with its own (Description) Logic.
As a non trivial plus of our approach, it becomes possible in
RelBAC to have non-logic experts to handle (logic) policies
and to reason about them using state of the art reasoning
technologies (the SAT technology - used within DL reasoners
- is by far the most advanced technology and the one mostly
used in real world applications).

Some work has also been done in formalizing RBAC in DL.
Thus, for instance, DL is used in [28] in order to formalize
relations as binary roles while, more recently, Jung-Hwa Chae
et.al use DL to formalize the object hierarchy of RBAC [29].
This work is again very different from ours as here DL is just

4The UCON model [20] deals with temporal and state transition issues
which our outside the current scope of RelBAC.

another logic used to reason about RBAC instead of the logic
designed to express (RelBAC) policies.

Other researchers have dealt with the problem we are
interested in. Thus for instance, Juri et al. propose an access
control solution for sharing semantic data across desktops
[30]. They use a three dimensional access control matrix
to represent fine-grained policies. We see a problem in that
their solution does not seem to scale well since the matrix
grows polynomially with the number of objects and of sets
of users sharing such objects (as from above, RelBAC, like
RBAC does not have this problem since it uses hierarchies
to represent knowledge about users, objects and permissions.)
Other authors have addressed the problem of access control in
open and dynamic environments by adapting RBAC. One such
approach is [25]. Another approach is the algebra of security
policies for access control in [31]. This algebra allows for
composing access control policies. S. Agarwal and B. Sprick
propose a similar algebra for dealing with the problem of
access control with semantic web services [32].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed RelBAC a model and a logic
for access control designed for open, highly dynamic environ-
ments, where users and data are organized in complex graphs
(DAGs or more simply directories) and where permissions are
handled as first class objects, largely independently from users
and objects.

The main novelty relies on the fact the RelBAC access
control model is designed as an ER model and that permissions
are modeled as ER relations. This allows, among other things,
to express policies which take into account the arity of
permissions, and for a direct translation of the RelBAC model
into a Description Logic, that we call the RelBAC Logic.
This, in turn, opens up various possibilities that we can be
summarized as follows:

1) It should be possible to change policies at run-time,
while the system is in operation and it should be
possible to do this by using a simple interface where
the administrator would see directories and relations
between directories. Even if our policy language is logic
based, the administrator will not need to know any logic;

2) it should be possible to reason about policies at run-
time, after any policy change, thus being able to adapt
to the continuous system dynamics;

3) It should be possible to implement the policy reasoning
system by largely re-using the large amount of work on
the expressibility, computational complexity and general
purpose off-the- shelf DL reasoners. Whether DL rea-
soners will be directly usable or whether we will need
to develop a dedicated reasoner is still an open issue.
The preliminary evaluations on using off-the-shelf DL
reasoning systems do not look encouraging.

As part of the immediate future work, we plan to investigate
the following directions:

1) modeling of the most common and important properties
(e.g., static or dynamic separation of duties), definition

of the DL logic needed to represent them and the
consequent definition of their computational complexity.
Notice that we should be able to do it uniformly differ-
ently from what is currently the case in access control
(see, e.g., [33], [34]);

2) further development and consolidation of our RelBAC
implementation and

3) its application in some pilot applications. At the moment
we have started using it inside a desktop application
developed by our group;

4) experimentation with the state of the art DL reasoners
in order to evaluate their direct re-usability in this
application scenario and, to conclude,

5) development of some automatic techniques for auto-
matic policy generation and maintenance based on our
formal classification and semantic matching technology
cited in Section IV-D.

ACKNOWLEDGEMENTS

This work has been possible only because of the great
environment and great people working in the Knowledge
Diversity group (http://dit.unitn.it/ knowdive/). The interaction
with these people has provided food for our thoughts: Fabio
Massacci, Viktor Pravdin, Mikalai Yatskevich, Pavel Shvaiko
and Ilya Zaihrayeu.

Alex Borgida is strongly thanked for his help on the
fromalization of the TAC rule.

REFERENCES

[1] IRIS, “http://www.openiris.org/.”
[2] Haystack, “http://www.openiris.org/.”
[3] Nepomuk, “http://nepomuk.semanticdesktop.org/.”
[4] M. Wilikens, S. Feriti, A. Sanna, and M. Masera, “A context-related

authorization and access control method based on rbac:,” in SACMAT
’02: Proceedings of the seventh ACM symposium on Access control
models and technologies. New York, NY, USA: ACM Press, 2002,
pp. 117–124.

[5] M. Strembeck and G. Neumann, “An integrated approach to engineer
and enforce context constraints in rbac environments,” ACM Trans. Inf.
Syst. Secur., vol. 7, no. 3, pp. 392–427, 2004.

[6] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and
R. Chandramouli, “Proposed NIST standard for role-based access
control,” Information and System Security, vol. 4, no. 3, pp. 224–274,
2001. [Online]. Available: citeseer.ist.psu.edu/ferraiolo01proposed.html

[7] P. P. Chen, “The entity-relationship model - toward a unified view of
data,” ACM Trans. Database Syst., vol. 1, no. 1, pp. 9–36, 1976.

[8] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, Eds., The description logic handbook: theory, implementa-
tion, and applications. New York, NY, USA: Cambridge University
Press, 2003.

[9] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical owl-dl reasoner,” Submitted for publication to Journal of Web
Semantics., 2003.

[10] B.Lampson, “Protection,” in Proc. 5th Princeton Conf. on Information
Sciences and Systems, Princeton, 1971. Reprinted in ACM Operating
Systems Rev. 8, 1, 1971, pp. 18–24.

[11] G. F. and Z. I., “Lightweight ontologies,” in Encyclopedia of Database
Systems, S. LNCS, Ed., 2008.

[12] Z. I. Giunchiglia F., Marchese M., “Towards a theory of formal clas-
sification,” in Workshop on Contexts and Ontologies: Theory, Practice
and Applications (CandO 2005), 20th National Conference on Artificial
Intelligence (AAAI-05), Pittsburgh, Pennsylvania, USA, July 9-13 2005
2005.

[13] ——, “Encoding classifications into lightweight ontologies,” Journal of
Data Semantics, vol. 8, 2007.

[14] G. F., Y. M., and S. P., “Semantic matching: Algorithms and implemen-
tation,” Journal on Data Semantics, pp. 1–38, 2007.

[15] G. E. Giunchiglia F., Yatskevich M., “Efficient semantic matching,” in
Proceedings of the 2nd European semantic web conference (ESWC’05).
LNCS, Springer Verlag, 2005.

[16] Y. M. Giunchiglia F., “Element level semantic matching,” in Meaning
Coordination and Negotiation workshop at ISWC’04. Hiroshima, Japan,
November 2004.

[17] F. Giunchiglia, F. McNeill, M. Yatskevich, J. Pane, P. Besana, and
P. Shvaiko, “Approximate structure preserving semantic matching,”
in Proceedings of the 7th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE 2008). LNCS,
Springer Verlag, 2008.

[18] G. F., S. P., and Y. M., “Semantic schema matching,” in Proc. OTM
Confederated International Conferences, CoopIS, V. . Springer, LNCS,
Ed., 2005, pp. 347–365.

[19] Y. M. Giunchiglia F., Shvaiko P., “Discovering missing background
knowledge in onology matching,” in 17th European Conference on
Artificial Intelligance - ECAI 2006, L. Springer, Ed., 2006.

[20] J. Park and R. Sandhu, “The UCONABC usage control model,” ACM
Trans. Inf. Syst. Secur., vol. 7, no. 1, pp. 128–174, 2004.

[21] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized temporal
role-based access control model.” IEEE Trans. Knowl. Data Eng.,
vol. 17, no. 1, pp. 4–23, 2005.

[22] A. Abou El Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miège, C. Saurel, and G. Trouessin, “Organization based
access control,” in 4th IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy’03), June 2003.

[23] M. J. Moyer and M. Ahamad, “Generalized role-based access control,”
in ICDCS, 2001, pp. 391–398.

[24] M. Bichler, J. Kalagnanam, K. Katircioglu, A. J. King, R. D. Lawrence,
H. S. Lee, G. Y. Lin, and Y. Lu, “Applications of flexible pricing
in business-to-business electronic commerce,” IBM Systems Journal,
vol. 41, no. 2, pp. 287–302, 2002.

[25] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca, “A logical framework
for reasoning about access control models,” ACM Trans. Inf. Syst. Secur.,
vol. 6, no. 1, pp. 71–127, 2003.

[26] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian,
“Flexible support for multiple access control policies,” Database
Systems, vol. 26, no. 2, pp. 214–260, 2001. [Online]. Available:
citeseer.ist.psu.edu/jajodia01flexible.html

[27] F. Massacci, “Reasoning about security: A logic and a decision method
for role-based access control,” in ECSQARU-FAPR, 1997, pp. 421–435.
[Online]. Available: citeseer.ist.psu.edu/massacci97reasoning.html

[28] C. Zhao, N. Heilili, S. Liu, and Z. Lin, “Representation and reasoning
on rbac: A description logic approach.” in ICTAC, ser. Lecture Notes
in Computer Science, D. V. Hung and M. Wirsing, Eds., vol. 3722.
Springer, 2005, pp. 381–393.

[29] J.-H. Chae and N. Shiri, “Formalization of rbac policy with
object class hierarchy.” in ISPEC, ser. Lecture Notes in Computer
Science, E. Dawson and D. S. Wong, Eds., vol. 4464.
Springer, 2007, pp. 162–176. [Online]. Available: http://dblp.uni-
trier.de/db/conf/ispec/ispec2007.html# ChaeS07

[30] J. L. D. Coi, E. Ioannou, A. Koesling, and D. Olmedilla, “Access
control for sharing semantic data across desktops,” in 1st International
Workshop on Privacy Enforcement and Accountability with Semantics
(PEAS), Busan, Korea, Nov. 2007.

[31] P. A. Bonatti, S. D. C. di Vimercati, and P. Samarati, “An
algebra for composing access control policies,” Information and
System Security, vol. 5, no. 1, pp. 1–35, 2002. [Online]. Available:
citeseer.ist.psu.edu/bonatti02algebra.html

[32] S. Agarwal and B. Sprick, “Access control for semantic web services,”
icws, vol. 0, p. 770, 2004.

[33] N. Li and M. V. Tripunitara, “Security analysis in role-based access
control,” ACM Trans. Inf. Syst. Secur., vol. 9, no. 4, pp. 391–420, 2006.

[34] N. Li, M. V. Tripunitara, and Z. Bizri, “On mutually exclusive roles and
separation-of-duty,” ACM Trans. Inf. Syst. Secur., vol. 10, no. 2, p. 5,
2007.

