

DISI Via Sommarive 14 38123 Povo Trento (Italy)
http://www.disi.unitn.it

THE SOCIAL COMPUTER –
COMBINING MACHINE AND HUMAN
COMPUTATION

Fausto Giunchiglia and Dave Robertson

May 2010

Technical Report # DISI-10-036

The Social Computer – Combining machine and human
computation 1

Fausto Giunchiglia
Dept. of Computer Science and Information Engineering

University of Trento
38050 Povo, Trento, Italy

fausto@disi.unitn.it

and

Dave Robertson
School of Informatics

University of Edinburgh
Informatics Forum, Crichton Street

Edinburgh EH8 9AB, UK
 dr@inf.ed.ac.uk

Abstract. The social computer is a future computational system that harnesses
the innate problem solving, action and information gathering powers of humans
and the environments in which they live in order to tackle large scale social
problems that are beyond our current capabilities. The hardware of a social
computer is supplied by people’s brains and bodies, the environment where
they live, including artifacts, e.g., buildings and roads, sensors into the
environment, networks and computers; while the software is the people’s
minds, laws, organizational and social rules, social conventions, and computer
software. Similarly to what happens within a conventional computer and more
interestingly within naturally occurring reasoning and control systems like the
human body, a social computer exhibits an algorithmic behavior and problem
solving capabilities which are the result of very large numbers of local
computations, decisions, interactions, data and control information transfers.

1. The vision

The social computer is a future computational system that harnesses the
innate problem solving, action and information gathering powers of

1 The elaboration of these ideas started when the first author gave the talk “The future of AI”,

at the Symposium in honor of Alan Bundy, Edinburgh, July 2008 [4]. Further elaborations
have come out of many discussions during the preparation and development of the FET FP7
IP “Forever yours” project “Living Knowledge” (grant agreement n° 231126) [7]. The
Trentino flooding explanatory example is an elaboration of the results of the STREP FP6
Open Knowledge project [8] which was also the source of many seminal ideas.

humans and the environments in which they live in order to tackle large
scale social problems that are beyond our current capabilities.
Examples of such problems are: a large scale fast reaction to a big
global threat (e.g., a tsunami or a flooding), a large scale slow reaction
to a global threat (e.g., the 2009 financial crisis), a large scale reaction
to a local problem (e.g., the need to acquire the otherwise not locally
available knowledge needed to identify a very rare disease), the goal of
reaching a global objective (e.g., how to save energy via the coordina-
tion of distributed production and consumption units), and so on.

The hardware of a social computer is supplied by people’s brains and
bodies, the environment where they live, including artifacts, e.g.,
buildings and roads, sensors into the environment, networks and
computers; while the software is the people’s minds, laws,
organizational and social rules, social conventions, and computer
software. The algorithms for social computation are those which take
advantage of the resilience and scale of mass human problem solving
and which achieve higher performance by supplementing social
capabilities of individuals by adapting the environment in order to
provide better feedback and instrumentation for the mass computation
achieved by society. This means that the analogue of an operating
system for a social computer is not just the computer or the network but
is primarily the social and environmental infrastructure that enables
large-scale social computation to occur.

Similarly to what happens within a conventional computer and, more
interestingly, within the human body, a social computer is associated
with an identity and a boundary which defines what is inside (its many
parts) and what is outside (the environment where the computer lives).
Inside and outside interact via computer networks and real world
physical or human enabled communication. A social computer is
characterized by being distributed but limited over a collection of
computational elements (people, organizations, system) and, in certain
cases, also in space, for instance within a region or a town. The
limitation in extent defines its identity and allows it to act within a
limited amount of time, for instance in order to react to a given
stimulus, or to achieve a goal. Social computations also effect the state
of the physical environment; as a consequence a social computer must
be capable of making its components interact and exchange data,

information and knowledge, but also to transfer them from one place to
another (e.g., people, cars, goods may be moved from one building to
another building). This requires networked infrastructure that connects
the various sensors, actuators and actors in the environment and,
equally importantly, allows fast and reliable transfer and transformation
of information flowing through this network.

The social computer exhibits an algorithmic behavior which is however
the result of very large numbers of local computations, decisions,
interactions, data and control information transfers. These activities
start, evolve and stop simultaneously inside the computer’s many parts
and across them, with its components being most often completely un-
aware and sometimes partially aware of the resulting global algorithm
behavior. The state of a social computation includes part of the state of
the physical, social environment in which the computation is situated.

The algorithmic behavior of the social computer can be characterized at
two different levels of abstraction:

1. A inner level (or loop): the level of what is nowadays called social

computing [2], where computers and people collaborate in a
distributed way to produce some global emergent behavior;

2. An outer level (or loop): This is the level where the global
behaviors produced by social computing are composed and
integrated towards solving the large scale social problems
mentioned above.

Inner and outer level can be iterated to produce more and more abstract
and complex behaviors as in “usual” programming. The key
observation is that the algorithms run at the outer level(s) produce
consistent and persistent problem solving performance, despite the fact
that part of this behavior is emergent (in the sense that it is derived
from the individual intelligences within a society). Thus, for instance,
in the case of tsunami response, the social computer might have as a
goal to minimize the number of casualties and the ideal algorithm for
social computation in this domain would harness the natural human
instinct to minimize personal injury in emergency situations in order to
obtain consistent minimization of casualties overall. Individual

reactions to the ongoing computation should tend to reinforce the
algorithm so that, as more people participate, its performance improves.

The problem solving capability of the social computer improves in
time. This result can be achieved because it is programmable, and the
set of programs that it can run can be increased in time, in quantity and
quality. In this context the notion of being programmable is very
different sense from that which applies to usual computers, even those
that are distributed. For instance, people cannot be programmed; yet
they can be induced into certain behaviors via, e.g., incentives or laws.
And there are already examples where people are used as computing
entities whose intelligence and activities are composed to achieve a
more complex goal [3,9,10]. The behavior of a social computer is
programmed by increasing and evolving the amount of globally
available knowledge about the world, and about itself, and its capability
to make maximal pragmatic use of it. Notice that here we use the term
knowledge in a very broad sense, including data of all the various kinds
(structured, semi-structured, unstructured, text and media of various
kinds), information, structured knowledge, but also specifications of
processes and services.

The social computer can be programmed thanks to its massive local
learning capabilities (reaching into human society and the social
environment) which, in turn, rely on the following set of requirements:

 The ability of the social computer to store a virtually unbound

amount of knowledge in the form of general knowledge and, more
importantly, of concrete ground knowledge about its components.
Some of this knowledge is also generated in real time, for instance
via sensors in the environment or social networking among people.
This global knowledge is the union of the local knowledge of its
components. The local knowledge of each and any component is
usually highly diverse from that of the others and, consequently, is
partial and often mutually inconsistent (where we use the word
“diversity” with the meaning defined in [1]).

 The ability for each and any component of the social computer of
finding and retrieving the needed specific knowledge in real time,
usually from other components.

 The ability of transferring the needed quantity of needed
knowledge from/to any two components in real time.

 The ability for each and any component of using the knowledge
transferred from other components despite the inherent diversity
and consequent difficulties.

Last but not least, the computer can sense and act in the world. People
are one the main means for sensing but this can also happen via
pervasive sensors and sensor networks. People are the main actuators of
the social computer. The social computer can also act via machines but
ultimately, modulo limited exceptions (e.g., intelligent machines,
automatic control devices) the final decision on how to act remains a
human decision, possibly supported by advanced decision support
systems. One could easily envisage scenarios involving social robots
autono-mously acting in the real world. While this is a research area of
po-tential, we believe that the current state of the art does not suggest
that we consider robots as key components of the social computer in
the medium term.

2. A metaphor and an example

As from the previous section, the vision is that a social computer is a
complex object that is able to produce globally coherent behavior based
on the composition of many simpler behaviors contributing to its
realization, while being unaware of “bigger picture”. The proposed
artifact, though quite innovative, can be compared with the human
mind and its “hardware realization” in terms of the human brain and
body, the latter being composed from very complex objects that,
nevertheless, are able to produce behaviors satisfying the properties
listed in the previous section. The early cognitive science literature
[14,15] and various attempts to build a computational (artificial)
intelligence [16,17] have hitherto had the effect of polarizing these two
visions, now made complementary through advances in technology and
modern society. We believe that the same will happen with the social
computer.

With this in mind, we provide an example of social computer by
paralleling it with the behavior of a human, hoping that this exemplifies

(rather than complicating) our vision. Section 7 will further exploit this
parallel to motivate the plausibility of the ideas presented.

Let us think of a person, Alice, walking in a street. All the sudden,
unexpectedly, a car gets very close to her and she reacts very rapidly
and jumps on the sidewalk. What can we notice in this small example?

 Alice has a clear, bounded spatial extension: her body and its

periphery.
 Alice’s behavior can be said to be algorithmic and she can perform

a problem solving activity with a precise goal to be achieved: avoid
being hit by the car. At the same time probably none of her
“components”; e.g. her legs, arms, muscles and nervous system, are
directly aware of the overall goal to be achieved.

 Alice’s problem solving capability is consistent and replicable: if
and when a similar situation arises she will again try to avoid the
car. The overall high level behavior will be the same even if many
of her “components” may turn out to have a locally different
behavior. Thus for instance one of her arms may end up being
above her head or waving in the air. However the specific final state
of her arm is not closely relevant to the goal to be achieved. The
action may be successful or fail, as a function of the local state
(e.g., the ability of Alice to perform a long enough jump).

 Alice’s problem solving capability can be improved over time: she
will remember this experience, she will learn from it (e.g., avoid
walking in the middle of the road), she will be able to integrate it
with the previous knowledge and reuse it in future situations. Even
more than this, by suitable training, she will be able to improve her
skills and knowledge and thus to perform much better in a similar
future situation.

 Alice bases this behavior and its adaption on signals from her own
senses and actuators.

Let us now consider Trentino, a small region in the North of Italy with
full broadband, optical and wireless network covering all its territory
and connecting its approximately 600,000 inhabitants. As periodically
occurs in the region, imagine that in 2020 there is large scale flooding
whose risk was anticipated only a few hours before the event itself. The
Trentino social computer reacts immediately with the overall goal to

save as many people a possible and to minimize the overall damage. In
particular, reiterating the analysis of the previous example:

 The Trentino social computer has clear geographical boundaries

which correspond to the territory of the Trentino region.
 The behavior of the Trentino social computer can be said to be

algorithmic and to have a problem solving capability with a precise
high level goal to be achieved. At the same time, most (if not all) its
components are unaware of the overall goal (operationally stated).
A few people (e.g., the police, the emergency handling people, the
health operators) have a global societal goal, which is anyhow only
part (a sub-goal) of the overall goal, while most of the population is
concentrated in their local goal and artifacts, including computers,
are simply passive or do what they are instructed to do.

 The problem solving capability of the Trentino social computer is
consistent and replicable even though there will be many local
results (e.g., specific cars (not) being destroyed by the flooding)
which are different in different floodings.

 The Trentino social computer can improve over time: it will
remember this experience, and future training and preparation will
make sure that next time the negative effects of the flooding will be
even less.

 The Trentino social computer uses all its own sensors and actuators
while reacting to the flooding.

But where is the novelty? Isn’t this what we already do now? Yes and
no. The difference is in the use of knowledge in order to make the
social problem solving process (which is quite chaotic in nature)
algorithmic, replicable, of increasing quality, where the high level
societal goal is effectively and efficiently instantiated into the required
millions of lower level societal sub-goals, down to organizational and
individual sub-goals. And this is exactly where ICT, its current
pervasiveness of being “anytime, anywhere and for anybody” can make
the difference. We list below some concrete examples, expanding on
the Trentino scenario, of pervasive systems that feed social
computation:

 All the people, via their cell phones, could be kept informed of the
evolution of the situation, e.g., where the flooding is going, where
buses or boats are, where the convergence points are, and so on.

 A specific piece of medical knowledge could be brought to an
untrained person needing it from the Hospital knowledge base in a
form which is easily understandable.

 A doctor could be found, via the phone directory, and driven to a
specific place in urgent need of her knowledge. The path to the
place could be provided to the doctor on her cell phone on the basis
of the real time information of the direction of the flooding. In
parallel, a dedicated program could establish from a hospital
database that the doctor does not have the right background and the
relevant information from the previous item could be brought also
to her cell phone.

 But how was it possible to understand what was the right “piece” of
medical knowledge and that a doctor was needed? This could occur
via a phone call from the person to the police and from the ability
of a program, via appropriate data access, to immediately put the
policeman in contact with an available person in the Hospital call
center.

 In parallel, the first available and closest ambulance (taken from a
Red Cross data base) could be brought as close as possible to the
place where the injured person who is then driven to the best
possible hospital (in terms of being geographically close, of having
available rooms, and the best possible competences).

 … and so on, for all the possible small and large situations and
problems to be solved, involving one or more of the many
components of the social computer.

3. The social computer and system architectures

We believe that there is an interesting and overall convergence in
software and knowledge architecture that makes it timely to build a
social computing architecture. In the internet world, there has been a
strong shift towards service-oriented architectures based on the notion
of encapsulating significant functionalities as services and making
these available to other services as a way of producing larger systems
via components with trusted interfaces [11]. In the mobile device world

we are seeing services cluster around particular types of data provision
and design of components being standardized in order to allow
consistency of service over time, based on strong standardization on the
means of coordinating those services [12]. In the world of physical,
robotic devices we have seen behavior-based architectures dominate, in
which the modularity of “service” is defined in terms of a behavioral
competence that can be trusted to a given tolerance as a component of
other, more complex behaviors [13]. In the knowledge world diversity
has been recognized as a feature which must be exploited [1,7] thus
leading the way towards the integration of isolated and diverse pieces
of knowledge. The “ICT forever yours” call [6] and the underlying core
emphasis on diversity are further evidence of this phenomenon.

In all of these areas, the core idea (even if not articulated in this way) is
that diversity must be handled based on an understanding of the
knowledge to be shared and the program design metaphor should be
that of module definition accompanied by coordination of modules to
obtain aggregate behaviors that are evolved through use. The scale of
the system means that different modules and coordination activities are
developed independently, with different local goals and implicit
assumptions, and they evolve over time. Time adds a further dimension
to the problem as modules and coordination activities developed at
different times will reflect the evolution of society [7].

In a social computer, knowledge and services are provided by society
and the performance of coordinated problem solving is evaluated by
that society, so that the design and evaluation phases within the
architecture follow a virtuous cycle. However for this to happen two
fundamental requirements must be satisfied:

1. there must be a mapping between the software (data and programs)

modules and their interactions and the corresponding social
components and interactions;

2. the pervasive social diversity must be mapped into the
corresponding pervasive diversity in software.

It is important to notice that the software diversity and modules are a
mirror of the social diversity and “modules”, the issue is how to
formalize this mirror so that society and programs keep aligned. This

requires mapping the architecture of the social computer into the
organizational structure of society. Although these are very early days
and devising such an architecture will be one of the biggest challenges,
we believe that a set of patterns will emerge simply as a consequence of
the need for computation at large scale to resemble society and its
organization. Thus, for instance, the social computer will most likely be
organized as a set of functional apparati, most often organized
hierarchically, which implement a well defined function, e.g.,
emergency response, health, energy management, governance, the
infrastructure for mobility and storage (e.g., buildings) and so on.2
Similarly, these apparati will most likely work autonomously and
largely independently of one another and will synchronize and
exchange knowledge in a relatively small number of very specific and
localized ICT enabled bridge apparati.

A small concrete instantiation of the general architecture proposed
above on the examples in Section 4 leads to the following
instantiations. In the first example the apparati involved will be the
respiratory apparatus, the cardiovascular apparatus, together with the
nervous and the motor systems. In terms these human apparati can be
decomposed in simpler apparati (e.g., the lungs and the heart) and
interact in very precise locations, that is cells, and there are different
cells with different functionalities for different apparati. Thus for
instance, the vascular system and the motor system interact in the
muscle cells. In the second example the apparati involved are the
Trentino health system, the telecommunication system, the emergency
response system, the local communities in parts of Trentino, and so on.
The bridge apparati perform both data homogenization and process
synchronization.

2 We expect that a set of initial results in this direction will be achieved as part of the efforts

of the “Future Internet (FI) Initiative”. Thus for instance, as part of the FI initiative, it is
possible to identify research and innovation areas such as eMobility, eHealth, eInclusion,
eEnergy, eGovernance, and so on.

4. Research issues

Although the structural conventions for social computation are familiar
(knowledge sharing, hierarchical organization of components, trusted
components, orchestration via mediation) the actual process of design
is radically different. Our goal is to enable social computation directly
to meet key societal challenges by improving the quality of decision
making, targeting, and timeliness of response to need. The social
computer will empower us to configure information, human,
computational, robotic and environmental resources to create new
hybrid structures to respond to challenges in the 21st century. This
requires new approaches to architecture that acknowledge the power of
an open, transparent, structure that stimulates innovation while
recognizing the need for democratic control that protects the rights of
individuals, minority groups and property owners. The architects of
social computation need a skill set that draws deeply on
interdisciplinary research into humans, organizations and society:

 Cognitive science, researching the match between human cognitive

capacities and the new environment enabled by the social computer.
 Economics, researching quantitative aspects of the transformation

brought about by the social computer, including incentives to use
social computation, economic impact, the effects of competition,
the stability of new markets and mechanisms.

 Sociology and organizational science, researching the synergy
between the new technologies underpinning the social computer
and the existing social and organizational structures together with
the trajectory of adoption and successive adaptations and evolution
of social structures and technologies as the social computer diffuses
through our societies.

 Law, which will provide us with the means for dealing with
legislative consequences of the approach and its negative effects
(attacks, viruses and other threats to the social computer).

 Criminology, researching the evolution of deviancy, conflict and
crime in the new environments enabled by the social computer.

 Ethics, will provide us with the foundations for the creation of a
better society.

 Innovation, Technological innovation, Service innovation, Social
innovation, which will provide us with the required knowledge of

the difficulties encountered when trying to transfer technology to
the real world.

When proposing a new research line as disruptive as the one proposed
here, an important question is whether this will stimulate innovation,
regardless of whether its ultimate goal is reached. This question is also
particularly important as Europe does very well in terms of research
production but much less when the issue becomes how to transfer the
research results into (technological) innovation. We believe that the
development of the social computer will generate a big improvement in
innovation capability, no matter how far we travel in its development.
As we have discussed elsewhere [5], we believe that the current best
approach to innovation (in particular in Europe) is to do technology
pull putting the end user at the center of the innovation process. This
can be done by designing service innovation in a way that enables
technological innovation and this is exactly what the social computer
does by putting society (and the individuals acting inside it) at the core
of the computation process. In this perspective social innovation can
again be put at the core of the social computer via the development of
new socially aware software development methodologies.

In turn, the studies developed by the disciplines listed above will
provide input to ICT. Virtually all the ICT sub-disciplines will be
impacted, most noticeably: data and knowledge management, service-
oriented architectures, software engineering, privacy and security, and,
ultimately all the Web and Internet focused disciplines. A first list of
research issues that will have to be addressed, includes:

 Defining a notion of computation which embraces society as well

as the mechanics of traditional computation and also harnesses
social scale to accommodate local behavioral deviations.

 Designing and developing much more abstract design
methodologies and languages, exploiting notions which are much
closer to the societal notions (e.g., notions such as goal, actor, plan,
activity, community, group) and where computers and humans are
treated uniformly.

 Designing and developing the “society based” technology which
must enable the storage, indexing and retrieval, transfer and use of
the social computer knowledge (data and programs).

 Charting the space of possible architectures for social computer
based systems.

 Handling knowledge diversity of data and programs in space and
time and, consequently, adaptivity, mutation, and evolution.

 Building run-time environments for monitoring, diagnosis,
compensation.

 … and so on.

The development of the social computer will require not only
engineering, e.g. the construction of new prototypes aimed at solving
specific problems, but also fundamental science aimed at explaining the
emerging phenomena (some of which are already arising). This will
require experimentation and, more in general, an empirical approach
which will provide the basis for the development of the theoretical
foundations of the social computer.

The development of the social computer will lead to a radical departure
from the current practice in ICT and also in the other disciplines (think
for instance of the design or experimentation processes, which will
have to be deeply aware of the social and economical notions which
will underlie the behavior of the social computer). We believe that
future ICT will go beyond the differences and barriers which now exist
among the ICT sub-disciplines and the other disciplines. The
integration between ICT and the other disciplines will not see ICT as a
simple instrument, nor as a cause of a simple change of approach. We
see a process of bi-directional, interdisciplinary mutual convergence
which will change all the disciplines, including ICT. In general, the
development of the social computer will require a holistic approach
where which will require an in depth merge of the existing know-how
which, in turn, will generate new disciplines which will position
themselves at the boundaries of the current disciplines.

5. How social computation changes the way we solve problems
and build algorithms

To demonstrate the change in approach necessary to build large scale
social computation systems, let us start with a (seemingly) simple
problem. Imagine that everyone in some geographical region has the

ability to supply observational data about some new disease that is
sweeping through the area and has a virulent form (d1) and a non-
virulent form (d2). People reporting a specific symptom s1 would like
to know whether this means they have d1 or d2. Opinions in the
medical profession differ, however, over the relationship between
symptoms and disease: one school of thought says (1) that s1, plus
other symptoms, is evidence for d1; another says (2) that s1, plus other
symptoms, is evidence for d2.

How do we solve this problem in the classical style?

1. Understand the problem, then deploy: Go back to the medical

profession and obtain consensus. Let’s say that option (1)
eventually obtains medical backing. Then we make the diagnostic
algorithm for option (1) and make it available as a service for our
population, each individual of which now has 100% chance of
getting the correct diagnosis. This approach succeeds only in the
unlikely event that lasting consensus can be reached with certainty
in a timeframe appropriate to the (in this case quite pressing) social
need.

2. Data-intensive analysis, then deploy: More commonly, the selection
between options (1) and (2) is made by testing the performance of
each against what we observe in the population, so data analysts
study what happens when part of the population develops s1 and
use that as evidence before choosing, say, option (1) and making it
available as a service. This, however, leaves the population without
a service until there is enough evidence to choose option (1). It is
therefore unlikely to succeed in cases where the disease moves
through a population rapidly – we end up with a 100% successful
service after the need for it has passed.

3. Deploy all relevant solutions: Make services based on option (1)
and option (2) available right away and let people use them.
Assuming that both services are equally accessed and that s1 is
indeed indicative of one or other of d1 or d2, 50% of the population
will receive the right advice. This is a poor success rate (no better
than flipping a coin) but in many practical situations may be better
than the other options above which make unrealistic assumptions
about the problem in order to strive for a 100% successful service
on deployment.

Let us now contrast this with a social computation for the same
problem. This proceeds as follows:

1. Deploy all relevant solutions: Identical to strategy 3 above.

Initially we have a system with a 50% success rate.
2. Individuals give local feedback: Give users of services a means to

rate the effectiveness (1) and (2) based on personal, individual
experience of actually developing d1 or d2 and comparing that to
the advice given by the service used. If option (1) is the correct one
then its rating will increase at the expense of option (2).

3. Individuals inform collective choice: Give users of services a means
of discovering the ratings of others. If the ratings are accurate then
this will influence more of the population to choose option (1) and
the success rate overall will be greater than 50%, approaching
100% as the ratings identify a clear winner.

4. Collective choice influences service provision: Give service
providers incentives based on social feedback. In our case, the
service based on option (2) would fall into disuse, unless it could be
reconfigured to compete for ratings against option (1).

This social computation has several advantages over the classical
approaches given above. It starts with at least some success (50%,
whereas classical options 1 and 2 stay at 0% for a disturbingly long
time). It is likely over time to increase its success rate, and do so as an
integral part of operating within the society it serves. Crucially, this
increase in success rate in steps a-c above is due to society itself, not to
the conventional computations relating s1 to d1 or d2. In step d, this is
taken a stage further by adding a social influence to the design of the
classical computations.

Algorithms for social computation can incorporate conventional
algorithms but a specific set of characteristics equip an algorithm for
social computation. These characteristics are themselves social, rather
than purely abstract properties:

 Social reinforcement through local incentives: At the core of the

algorithm there must be a self-reinforcing system of feedback such
that the incentive for an individual to supply data to the algorithm

increases as more individuals participate. In our example above the
incentive for individuals to use the social system might be that by
supplying ratings their own diagnosis as well as those of their peers
would be likely to improve.

 Scaling to society: The performance of the algorithm should
increase as more individuals participate. In our example above, the
mechanism for propagating ratings and using this to influence
choice of diagnostic service would have to do little more than
statistically measure the actual accuracy of diagnosis experienced
by individuals – a lightweight process that scales to large
populations but one which harnesses a complex human process
(each individual’s judgement).

 Correctness as a social measure: Whether or not the algorithm
gives the right result is determined by the aggregation of experience
built into the algorithm itself. In our example above, the correct
diagnostic answer is estimated by those using the algorithm and the
estimate is fed back into the behavior of the algorithm.

 Completeness as a social judgement: Since social algorithms begin
as incomplete problem statements and grow to cover more of the
problem via interaction with the population, there is not necessarily
any specific point at which we can insist that we have a complete
specification of either the problem or the algorithm to solve it,
particularly since the environment within which society operates is
subject to change. In our example above, disease d2 which was
non-virulent might become virulent (or vice versa for d1) so a
simple notion of completeness cannot usefully be applied to this
system – it is much more useful to ensure that the system converges
on whatever partial completeness is available.

 Evolution through social influence: A social algorithm must evolve
with society because the effectiveness of the algorithm depends on
its links from and to that society. However, initial algorithms are
likely to be imperfect and use imperfect components so the design
of the algorithm must include incentives for those maintaining
system components to improve them in response to social pressure.
In our example above, there is no reason to have only two services
offering diagnoses for d1 and d2; we could have many services and
allow the rating system to direct individuals at those with greater
predictive power, thus driving system evolution through a market
conditioned by the algorithm itself.

Social algorithms are still algorithms in the traditional sense but the art
of building such algorithms lies in allowing society (in the physical
world) to take much of the burden of dealing with complexity of
problem solving, building lightweight but scalable algorithms (in the
virtual world) to pull data in from individuals; generate new
information of higher utility to individuals based on the social
interaction; and return the higher utility information to individuals in
such a way as to reinforce their participation in the algorithm.

6. Example applications

In Section 5 we explained how the architecture of a social computer
can change fundamentally the “rules of the game” of traditional, large
scale computational problems in target areas. The following are
examples of the way in which a traditional hard problem is radically
altered by viewing it as a social computation.

Maintaining resilience in adverse conditions under time pressure. The
standard means of controlling a public emergency (such as an
evacuation during flooding or re-routing of traffic in response to
damage of road networks) is to develop a plan for dealing with the
emergency; fund a central agency that coordinates the plan; then
coordinate activities through that agency during plan enactment. This
way of operating is weak against damage (either directly to the central
agency or indirectly through breakdown in communication channels
between the central agency and those “on the ground”). A social
computation solution allows those on the ground to communicate via
personal devices enabled with shareable, though localised, plans of
action and cooperation so that information about the unfolding
emergency can propagate without routing through a central agency.
This gives local information immediate value and substitutes an
opportunistic local trading system (with the incentive for supplying
information being access to immediate information from others who
understand different parts of the overall emergency) for a centralised
authority. Although the localised plans for coordination are
fundamentally different from those that might have been devised by the

central agency, the cumulative effect of their enactment by may be as
good or better than centralised plans.

Maintaining resilience in adverse continuously changing conditions in
time. There is a growing need of controlling and possibly decreasing
energy consumption. In parallel, due to the production of increasing
quantities of alternative energy, there is growing number of energy
providers, possibly for small quantities, distributed geographically
(down to the single producer in her own house). This in turn requires
the development of smart grids which optimize distribution, thus
minimizing the energy loss due to transportation. This process is quite
complex, not only from a modelling point of view but also in terms of
enabling authorization, safety, and control processes. Currently the
process of energy production and distribution is largely managed and
controlled centrally with local energy producers disconnected from the
grid and thus potentially wasting any excess of energy they will ever
produce. A social computer would allow a more distributed process
where production, distribution and consumption are locally controlled
in a way to achieve the global societal goal the need of optimizing
energy management.

Another example is the intelligent management and control of traffic.
Differently from the current situation where the decision is of the single
person or of some central authority, the situation could be much more
fluid and left to multiple deciders who are aware of local traffic
conditions (e.g., a school knows the moment of most intensive traffic in
the nearby streets).

Increasing quality and availability of a scarce resource. Proteomics
data analysis is underpinned by a small number of curated databases,
each maintained as a service in a traditional, centralised style. Data is
input to a service; curated by a small team of specialists; then supplied
on demand to clients of the service. As the use of proteomics data has
increased we reach a limit to the quality of curated data (since the
extent of quality control is limited by the size of the central curation
team) and to the number of clients that can be served (since this is
limited by the size of the server farm serving the data, and the curation
task itself is not a lucrative activity because it cannot be easily focused
on the very specific needs of clients). A social computation solution is

to make available to every proteomics client a system that allows it to
acquire proteomics data from other clients (including the original
curated databases) provided that a portion of its unwanted but analysed
data is made available for acquisition by other peers. This generates
value for the group at little cost to each participant because in
proteomics only a fraction of the data analysed for a given task is
actually of value to the person doing the analysis; the rest is wasted
unless shared. With a system for assessing the reputation of each
participant, it becomes possible to use the social group for curation of
the data rather than relying on centralised curation, which remains but
only as one participant in a much larger social network.

Another example falling under this heading is the handling of rare
diseases, with the specific knowledge behind in the minds of a very
small number of experts whose existence is largely unknown to most
doctors.

Occupying untapped economic niches. Clinical trials are a major
contributor to the cost of drug development and typically are performed
in a centralist style: a workflow is developed by a trial organisation;
vetted by specialists; enacted at selected geographical sites which are
paid for their participation; then the results analysed. In practice, this
approach lacks the agility to cope with diseases, such as malaria, where
the geography of outbreaks changes over time and where development
of resistance by the malaria parasite often outpaces the speed of clinical
trials for new drugs to combat it (since by the time a foolproof trial has
been devised, vetted and resourced the parasite may have mutated). A
social computation solution is to allow anyone to choose to take part in
an open trial but with payment being a function of the effectiveness of
the trial, so participants are only well paid if they supply the quality of
information that supports the subsequent analysis. This avoids the
problem of trials being an “all or nothing” activity (since some data is
acquired whether or not it is at a level sufficient to validate a clinical
trial) while retaining the ability rigorously to vet and analyse data.

Opportunistic cooperation towards a common goal.3 Let us consider an
hypothetical example where a certain number, possibly quite large, of

3 Thanks to John Mylopoulos for suggesting this example.

SMEs decides to cooperate as part of a virtual corporation in order to
be able to attract large international contracts for home furniture. The
companies respectively specialize in furniture design, carpentry,
upholstery and furniture wholesaling. In order to survive, the new
corporation must set up processes for attracting contracts (sales),
designing furniture on the basis of contract specs, manufacturing
furniture, doing quality control, ensuring that their contracts are
completed on time and in accordance with terms. The problem is dealt
with in several steps: (i) resources are identified within the companies,
and some resources are recruited from outside to fill gaps in expertise/
skills, (ii) business processes are set up to operationalize the basic
objectives of the project, (iii) monitoring mechanisms are set in place
for quality control, (iv) governance structures are defined for adapting
business objectives, policies and processes as the corporation acquires
experience.

7. From Artificial Intelligence to the social computer 4

In our opinion, we have reached a key point in the development of
Computer Science and ICT in general. ICT appears to have reached a
peak of success, with impressive forecasts for employment in ICT 5 and
with major activities, like the Future Internet Initiative, being started
worldwide whose main goal is to root ICT technology deep in the
workings of the future society.

But because of this major success, the question which arises naturally
is: “What is Next?” Where should now ICT dedicate its efforts towards
building the foundations of the Future ICT, the ICT which will be
needed after the Future Internet Initiative (and other similar initiatives,
e.g., Artemisia, in the area of embedded systems) will have achieved all
its results. As can be seen, for instance from the recent calls of the
European Commission (EC) Future Emerging Technologies (FET) in
ICT, there are many options at the various levels of abstraction: at the
device level (e.g., by using organic materials), at the theory of

4 The contents of this section are a synthesis and a discussion in light of the social computer

proposal of the argumentation originally provided in [4].
5 As an example, the labour statistics Bureau of the US has projected that from now to 2018

almost 60% of all the jobs in science and engineering will be in ICT.

computation level (e.g., quantum computation, chemical or bio-
computation), at the systems level (e.g., robots, embodied intelligence,
complex systems).

Concentrating on the system level, which is our area of expertise, this
paper suggests the social computer as one possible such choice. And
since a good way to guess the future is to learn from the past, at least in
order to avoid making the same mistakes, our analysis starts from an
analysis of the work done in Artificial Intelligence (AI), namely the
area where, many years ago, the authors began their research careers.

We started with the goal of building some form of AI. In particular,
what was called “strong AI”, had the goal to build an artificial human-
level intelligence, Our driving metaphor was human intelligence and
behavior, and thus we soon changed the original goal into that of
building a human-like intelligence. By this we mean that most work in
strong AI was (and still is) rooted in the assumption that the first
artificial intelligence had to be an actor (e.g., an expert system, a robot,
a reasoning system) which would live in environments (parts of the
world) which were not themselves actors, with a clear distinction
between what was inside or outside the artificial intelligence.
Furthermore, the science and engineering of strong AI was based on
concepts and notions which are metaphors of natural phenomena, such
as: goal, plan, action, knowledge, agent, and so on. And the most
obvious (only) way to implement these notions was on the existing
computers, the most complex and powerful computing machinery
available at that time.

The assumptions underlying the social computer are somewhat similar
to those underlying strong AI, as briefly described above. However, the
original dream of building a human-level intelligence failed. So,why
should this not be the case with the social computer? What is the key
difference?

The main reason for the failure of strong AI was that the
implementation of these human-like notions on a computer run into
major problems, most noticeably, time and space scalability. Even the
most sophisticated programs would not perform acceptably under the
requirements dictated by real world scenarios. In our view, this was no

accident. Given the intrinsic combinatorial nature of the world and,
consequently, of computation, the implementation of very abstract
notions is bound to exhibit a combinatorial behavior unless, by fine
tuning between the underlying hardware and software components, one
makes sure that the upper level abstractions “fit naturally” the lower
level computational structures. On the basis of these considerations,
given how little knowledge we still have about the human brain, and
given the fact that this situation is not set to change for a while, we do
not see as feasible in the short term a plan which aims at building
intelligent artifacts (e.g., companions, team players) with general
purpose capabilities based on existing computer systems. They will
have to be confined to niche areas and limited specific tasks.

At the same time, these past years have brought us the Internet and the
Web. If we look at the Web as analogous to a nervous system which
connects its sensing and acting devices into the real world, namely
people and sensors, we have now a new form of computing machinery
(hardware) of a complexity comparable to that of the human brain.
Furthermore (and this is the really good news) differently from the
human brain, we understand the plumbing, namely how the people and
sensors interact via the nervous system. We have built it! This gives us
the unique opportunity to re-visit, with some hope for success, the
earlier dream of building a human-level intelligence (which, most
likely will turn out not to be a human-like intelligence). The crucial
design decision is to make sure that the underlying hardware and the
more abstract software notions are isomorphically matched. But this is
exactly what our proposal of building the social computer is all about!
How far we will go in this path is unclear. At the same time, this
project will lay the foundation of the future ICT and, as we discussed in
Section 4, we will most likely have a positive impact on our capability
to produce technological, service and social innovation.

Acknowledgements

This paper has benefitted from feedback and interactions with many
people including. Stuart Anderson, Peter Apers, Roberto Bona, Fabio
Casati, Mario Diani, Frank Van Harmelen, Wide Hogenhout, Fabio

Massacci, Daniele Miorandi, John Mylopoulos, Fabrizio Sestini, Paolo
Traverso and Enrico Zaninotto.

References

1. Fausto Giunchiglia, “Managing Diversity in Knowledge” (invited
talk), European Conference on Artificial Intelligence (ECAI),
Trento, September 2006. Lecture Notes in Artificial Intelligence.
Online presentation, from
http://www.disi.unitn. it/~fausto/knowdive.ppt

2. James Surowiecki, “The Wisdom of Crowds”, Anchor Doubleday
publisher, 2004.

3. Wikipedia. “Human Flesh Engine”.
http://en.wikipedia.org/wiki/Human_flesh_search_engine

4. Fausto Giunchiglia, “The future of AI”, Knowledge Representation
and Reasoning (KR&R) (invited talk), Sidney, September 2008;
and Symposium for Alan Bundy (invited talk), Edinburgh July
2008. Online presentation from:
http://www.disi.unitn.it/~fausto/futureAI.pdf

5. Fausto Giunchiglia, “Trentino as a Lab (TasLab) - Innovation as the
way of being, thinking and evolving”, Presentation, March 2008,
Slides available from the author. Site of TasLab: www.taslab.eu

6. DG Infso, European Commission, “ICT – Information and
Communication Technologies, Work Programme 2007-08,
Objective ICT-2007-8.6: FET Proactive 6: ICT forever yours”,
2006

7. Fausto Giunchiglia (coordinator) “Living Knowledge – Facts,
Opinions and bias in time”, FP7 FET IP, http:// livingknowledge-
project.eu/, duration: 2009-2011

8. Dave Robertson (coordinator) “Open Knowledge”, FP6 STREP,
http://www. openk.org/, duration: 2006-2008

9. The Amazon Mechanical Turk.
https://www.mturk.com/mturk/welcome

10. Amazon Mechanical Turk Monitor. “Jim Gray’s search”.
http://mechanical-turk.blogspot.com/2007/02/you-can-help-find-
jim-gray-from-home.html

11. DARPA Network Challenge.
https://networkchallenge.darpa.mil/Default.aspx

12. Open Service Oriented Architecture Collaboration
 http://www.osoa.org

13. “Reality Mining” article in MIT Technology Review special report
on emerging technologies 2008
http://www.technologyreview.com/specialreports/specialreport.aspx
?id=25

14. P.N Johnson-Laird, “Mental Models”, Cambridge University Press,
1983.

15. John Haugeland (editor), “Mind Design”, The MIT Press, 1981
16. Marvin Minsky, “The Society of Mind”, Simon & Schuster, 1985.
17. Allen Newell and Herbert A. Simon, “Computer Science as

empirical enquiry. Symbols and Search”, Turing award Lecture
1975, Communications of the ACM, 19 (March 1976), 113-126.

